VI. Electrokinetics

Lecture 30: Linear Electrokinetic Phenomena

Notes by MIT Student (and MZB)

1 Linear Electrokinetic Resonse of a Nanochannel

Fixed surface charge L
Apply
AP, AV Area ‘:>
A Observe
Q.l

We start with the system in equilibrium

Q=0
I1=0
eV = p(¢)
VpE = - Pqu¢

Where p, is the electrostatic pressure.
Now, consider applyig a small perturbation AP, AV and calculate linear
response, and assume diffuse charge does not change:

¢($ay7 Z) = 1/}(337y) - FEozz

equilibrium potential profile =~ small perturbation: axial electric field
p(z,y,2) = pe(z,y) — Goz2
Vp=—-V.ipe + Goz
~—~

small
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The transverse gradient V| = %x + a%g). The Poisson equation is now:
p=—eV2¢=—eVip = peg(t)
The full PDES:
p=—eV?
Vp = nV2@ + pE
reduce to

Peq(¢) = _Eviw
—Go =nVii —e(Vi)Ey

Let u = ug + up; the velocity has electrosmotic and pressure driven compo-
nents, where:

—GO = nViu}, (1)
e(VA)Eg = V2 ui (2)
To solve this, we have
iy = W9 g
n
where we introduce an another harmonic function, Vigp = 0 which satisfies
@ = 1 on the boundary (no slip). For a symmetric cross section (e.g.

parallel plates or a cylindrical pore), the potential of the surface is constant
by symmetry, so ¢ = ¢ = constant (since the unique solution of Laplace’s
equation with constant Dirichlet boundary condition is a constant function).

1.1 Pressure driven flow
Qp = / updrdy = Ak,Go
A

where k£, is hydrodanmic permeability, eg k, = % for parallel plates. Al-
ternatively,

Qp = K,AP
where
AP
Go=—7"
Ak
K =P
P
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1.2 Electrical current

Ig = / o Eydxdy
A
= AkgpEy = KgAV

where

2

o () = axial conductivity = k:eiT (23 Dycy(¥) + 22 D_c_(¥))
B

for a binary electrolyte, and ¢4+ = equilibrium ion profiles.

1.3 Electro-osmotic flow

QE:/udedy
A

~ <k /A (0 — @)dady

= AkEoEo
= KpoAV

where

E
KEoz/zw—sodmdy
= [w-v

—AV

Po=—7~
Ak

Kgo = LEO
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1.4 Streaming current

I, = / pupdrdy
A
= —5/(V2lw)updxdy
A
=~ [ (V30 = @))uady

—— [ (0= )V uydady
A

€

- — ©)Godzd
,,7/A(¢ ©)Godxdy

= AkscGo
= Kgc AP

In the fourth line, we make use of the identify, [(V2f)gdzdy = [ f(V3g)dzdy
if f and g vanish on the boundary !, which is the case for the pressure driven
flow u, and the electro-osmotic flow u, ~ ¥ — .

Thus we have that

Ksc = Kgo (Onsager relation)

This result is very general, for any charge distribution p.(¢’) and any cross-
sectional geometry.

2 General Linear Electrokinetics

For any small disturbance (linear), the driving forces and resulting fluxes
can be expressed as:

symmetriz gradients
fluzes | = matrix thermodynamic
Y
K=K" forces

'Proof: For volume V' and surface S, [, (V*f)gdV = [,(V-(gVf) = V[ Vg)dV =
$s7-(gV f)dS— [, Vf-VgdV (divergence theorem) = §, i1-(gV f—fVyg)dS+ [, fV2gdv.
The surface integral vanishes if f and g vanish on the boundary. This is a generalization
of integration by parts.
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Specifically, for a nanochannel,

Q\ (K, Kgo)\ (AP

I) \Kgo Kg AV
With the Onsager relations K = K. Onsager (1931) derived this rela-
tion for linear response of a general system near thermal equilibrium, assum-

ing local, microscopic time reversibility of the equaitons of motion. Here we
see it emerge explicitly for linear electrokinetic response in a nanochannel.
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