
V. Electrostatics

Lecture 28: Electrostatic Correlations
April 13, 2011 

            Notes by MIT Student (and MZB)

1. Mean-Field Theory

Until now, we have developed continuum models for the dynamics of electrolytes at the macroscopic 
scale, much larger than typical length scales for intermolecular forces. In particular, we have used 
principles of nonequlibrium thermodynamics, to arrive at general models of interfacial voltage (Nernst 
equation), reaction kinetics (Butler-Volmer equation), and transport (Poisson-Nernst-Planck equations): 

� 

⎧µ i = kBT ln(γ ic i) + zieφ⎪ 
⎪ Fi = −Mici∇µi
⎪ 
⎨∂ ci + ∇⋅ F
∂t i =⎪ 0

⎪ 
⎪ −∇⋅ (ε∇φ) = ρ =∑zieci⎩ i

For short-range interactions, such as chemical bonds or collision forces contributing to the 
diffusivity ( Di = Mi / kBT ), this formulation is easily justified, but for long-range interactions, 
such as the electrostatic Coulomb potential, which decays very slowly with distance (like 1/r), it 
can be more problematic. 

Continuum models like the Poisson-Nernst-Planck equations are “mean-field approximations” 
which express the statistically averaged behavior of a large number of discrete ions in terms of 
only the mean concentrations ci  (number/volume) and a particular definition of the mean 
potential φ . Each ion migrates in the mean electric field, E = −∇φ , which is self-consistently 
produced by the mean charge density, not by the discrete, fluctuating charges in the molecular 
system. Due to the long-range nature of electrostatic forces, however, discrete ion-ion 
interactions leading to “electrostatic correlations” are important, even in dilute electrolytes. 

2. Bjerrum length

What is the length scale below which electrostatic correlations are important? In very dense 
charged systems, it is the ion size, as in solvent free ionic liquids (see below). In typical 
electrolytes, however, the relevant scale is the Bjerrum length, where the bare Coulomb energy 
between two elementary charges is balanced by the thermal fluctuation energy:
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e2 e2

= k
4πεl BT ⇒ lB =

B 4πεkBT

At larger length scales, we may expect that thermal fluctuations are strong enough to justify 
replacing discrete ion-ion Coulomb forces with a continuum mean-field theory. In water at room 
temperature, the Bjerrum length is 0.7nm, which is only a few molecular lengths, so it makes 
sense to try to use mean-field theories based on the continuum PNP equations (such as Gouy-
Chapman) to describe the diffuse part of the double layer, at least at low salt concentrations, 
when the Debye length greatly exceeds the Bjerrum length. Note that these two length scales are 
related as follows: 

1 1λD = =
4πlB∑ z2

i c 8π
0

lBI
i

where I 1
= ∑ z2

i c0  is the molar ionic strength, which arises in Debye-Huckel theory, based on 
2 i

linearization of the PNP mean-field theory above for small voltages. (See also below.) The 
condition  λD  lB , which is needed to justify a mean-field theory of the diffuse part of the 
double layer, thus corresponds to an upper bound on the ionic strength: 

I 1 3
 ⋅

 6 4πl 3
B

For a z:z electrolyte, this implies that the mean volume per ion must be at least 3z2  times larger 
than the “correlation volume” (inside a sphere whose radius is the Bjerrum length) in order for a 
mean-field theory of electrostatics to hold. 

3. Correlation Functions 
 
How can we go beyond mean field theory, if we know the interactions between discrete particles 
(e.g. Coulomb)? We simply need a statistical description of the liquid that gives us the 
probabilities of finding different local ionic configurations, whose energies we could in principle 
calculate. From experiments (e.g. neutron scattering) or simulations (e.g. molecular dynamics, 
Monte Carlo, etc.), it is possible to measure statistical correlations between discrete particles, 
related to their interactions. For a given system of ions of species i and species j, the number of 
pairs of said ion, separated by a distance r to r+dr is given by  

n 2
ij (r) = 4πr gij (r)c ic j  

where gij (r)  is the pair correlation function (g is unity in a uniform ideal gas).  In a crystal with 
long-range order, g(r) has sharp, well-separated peaks located around the discrete mean neighbor 
separations. In liquid (Fig 1), there is only short range order up to several molecular neighbors, 
beyond which there is complete mixing g=1. 
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For pairwise interactions, the enthalpic contribution to excess chemical potential (due to internal 
energy, not entropy) can be expressed as sum over all species of radial integrals over the pair 
correlation function 
 

1 ∞

µ ex
i = kBT lnγ 2

i = ∑ ∫ Kij (r)4πr g
2 ij (r)c jdr +  many-body terms 

j 0

 
where Kij (r) = pair interaction energy. The factor of 1

2  prevents double-counting when 
evaluating all of the pairwise interactions. 
 
For example, in the case of a single species with only pairwise self-interactions (regular solution 
model), we have expressed the excess chemical potential as µex = −2Ωc , so we can now relate 
the macroscopic regular solution parameter to the microscopic statistical physics via 
 

∞

Ω = −∫K(r)g(r)πr2dr   
0

 
From this expression, we can already see the difficulty in describing electrostatic forces in 
condensed phases, because the slow decay of the Coulomb interaction, K ~ 1/r, makes the 
interaction energy infinite, unless there is a sufficiently fast decay of the pair correlation function 
(faster than 1/r2). Of course, the interaction energy must be finite, and indeed, we will show in 
the next section that the electrostatic pair correlation function decays exponentially, at least in a 
bulk dilute electrolyte. 
 
In an electrolyte, we have gij(r) for different types of ion pairs. g+-(r) is the counter-ion (opposite 
charge) pair correlation function, and g--(r) is the co-ion (same charge) pair correlation. As 
shown in the figure, counterions are generally attracted (g+->1), while co-ions are repelled (g--
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FIG. 1 Typical g(r) for a liquid. The first neighbor distance is r1, the second is r2, etc.
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<1). The difference between these distributions defines the statistically averaged the “screening 
cloud” of excess opposite charge around each ion. The long range tail of these correlation 
functions is dominated by electrostatics and can be modeled by Debye-Huckel theory (below), as 
a first approximation. However, as shown in Fig 2, there can be an oscillation in the charge 
density of the screening cloud (crossing of the two correlation functions at 10A), due to weak 
“overscreening” by the closest counter-ions. This effect is much stronger in solvent-free ionic 
liquid, and requires more sophisticated electrostatic models (below). 

 

FIG. 2 Total correlation functions for a monovalent binary electrolyte with diameter of the ion = 5Å. g++(r) is the pair 
correlation function for a central atom and a neighboring co-ion and shows repulsion. g+-(r) is the counter-ion pair 
correlation function and shows attraction. The solid lines result from asymptotic analysis of the double layer and the 
dashed lines result from setting the mean force potential equal to the sum of the core and electrostatic asymptotes. 

 4. Electrostatic Correlations in a Dilute Electrolyte (Debye-Hückel Theory) 
 
The bare coulomb interaction in a dielectric solvent for point charges is given by 
 

(zie)(z
K je)

ij =  
4πεr

 
To calculate ion profiles in the “screening cloud,” the region of excess diffuse charge or diffuse 
countercharge, of a spherical central ion of species I, we use the Debye-Hückel approximation 
 � 
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−z ⎛ z eψ
c j (r)= gij (r)c

j eψ  ⎞ 
j = c je

kBT ≈ c j⎜1 −
j ⎟  

⎝ kBT ⎠ 
 

where ψ  is the perturbation of electrostatic potential in the screening cloud of the central ion and 
is ψ = φ − φ . The fluctuations have energy on the order of ~kBT which is of a small enough 
magnitude that the linearization in the above equation is valid. The linear response of a screened 
central ion is then given by the linearized Poisson-Boltzmann equation, or Debye-Hückel 
equation, for a general dilute electrolyte: 
 

 λ 2
D∇

2ψ =ψ    
 
Over the length scales considered, the potential varies only with distance from the central ion. 
The potential is thus a function of r only and the above equation simplifies to  
 

λ 2
D d ⎛ 2 dψ
2 r ⎞

r dr ⎜⎝ dr ⎟ =ψ  ⎠
 
Because the fluctuations in the potential decrease with increasing distance from the central ion 
(φ →φ as r →∞ ), ψ(∞) = 0 . Applying this boundary condition, the solution to the above 
equation is a modified spherical Bessel function 

 

ψ(r) e−r λ

= A
D

 
r λD

 
The constant A can be evaluated using Gauss’s law for a point charge. The electric field 
generated about a point charge is indistinguishable from that at the surface of a spherically 
symmetric charge distribution of the same total charge.  
 

dψ z e ea λ

ε A
D z− = i ie  

d 2  ,   which implies    =
r r=a 4πa 4πε(a + λD )

 
Incorporating these boundary conditions gives the screened Coulomb potential 
 

e
(a−r )

ψ (r)
λD z= ie  

4πεr(1+ a
λD

)
 
The pair correlation function then becomes 
 

(z e
( a−r )

g
λ

ie)(z je) D

ij (r) = 1−  
4πεk Tr(1+ a

B λD
)
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This form describes the long-range tail of the correlation functions, which decay exponentially at 
the scale of the Debye length. Note that in a dilute solution, counter-ions are attracted just as 
much as co-ions are repelled: 
 

1  (g++ (r) + g+− (r)) =1  
2

 
Using the Debye approximation for the pair correlation function and ignoring many-body terms, 
the excess chemical potential for species i is  
 

a
λ

µ ex 1 (z ⎛ ( −r )
D ⎞ 

= ∑ ∫
∞

ie)(z je) ⎜ (zie)(z je)e ⎟ 
i ⎜1− a ⎟ 4πr2c

2 4πεr 4πεk Tr(1+ ) jdr  
j a ⎝ B λD ⎠ 
⎡ ⎛ 2 ⎞ ⎤ 

∞ ⎢ (z e) ⎛ ⎞ 2 ∑(z e c
(z e j )

) ⎜ j ⎟ e
( a−r )

λD ⎥ 
              = ∫ ⎢ i ⎜ j

8 ⎜ ε ∑z i

π r jec j ⎟ −⎟ ⎟ ⎥  
⎢ ⎠ 8 ⎜ 

⎝ πε εk T (1+ a
dr

a j ⎜ B ⎟ λ ) ⎥ 
⎣ ⎝ ⎠ 

D

⎦ 
 
The first term in the above summation is the product of the bare Coulomb potential and the bulk 
charge density. Assuming bulk electroneutrality, this term is zero, but would otherwise diverge! 
 
The excess chemical potential simplifies to 
 

2

µex (z e)
i = kBT ln(γ i ) = − i  

8πε (a + λD )
 
whereλD  is the Debye screening length. The screening length can also be written in terms of the 
molar ionic strength I  
 

εkBT εk
λD = ∑ = BT

 
(z je)2c j 2Ι

j

 
Note that the excess chemical potential due to Debye-Hückel electrostatic correlations is 
negative. The electrostatic interaction between an ion and its oppositely charged screening cloud 
is attractive, thereby lowering the total electrostatic energy of the system. The excess chemical 
potential of species i can be written in terms of its activity coefficient. Using the above 
expression for the screening length, the Debye-Hückel activity coefficient for dilute electrolytes 
can be written as 
 

ln(γ i)
−z 2

= i α Ι
1+ Ba Ι  
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Simpler derivation: Although the derivation based on correlation functions above is very 
general and could be applied to any kind of molecular interactions, there is an easier way to 
derive the excess chemical potential for purely electrostatic correlations. The screened Coulomb 
potential at the particle surface is the extra energy gain per charge by adding an ion to the 
system, relative to its bare Coulomb potential (in the solvent, without any ionic charge 
relaxation). This immediately leads to the DH formula: 
 

µex z
i = ie ⎛ z (ψ (a) ie ⎞ z e)2

⎜ − ⎟ = − i

2 ⎝ 4πεa⎠ 8πε (a + λD )   
 

where the ½ factor again avoids double counting of the pairwise electrostatic forces. This 
formula also corresponds to the “Gutenberg charging process”, a thought experiment in which 
we turn on charge relaxation after placing an ion in the solvent. 
 

5. Ionic Liquids 
 
Ionic liquids are solvent-free mixtures of ions. Examples include simple molten salts (e.g. NaCl 
at 2000°C), and as room temperature ionic liquids (e.g. large organic or fatty ions). Some RTILs 
can withstand up to ±6 V, making them good candidates for supercapacitors. They are also 
widely used as designer solvents. In ionic liquids, there is no solvent, only highly crowded ions, 
so the Gouy-Chapman-Stern model for dilute electrolytes is not valid.  In fact, the Debye-Huckel 
screening length is smaller than the size of a single ion, and the relevant length scale for 
electrostatic correlations and double-layer screening is the ion size.  
 
For highly concentrated electrolytic solutions or ionic liquids, the short-range Coulomb 
correlations are very strong, and generally lead to “overscreening,” whereby an excess of 
counter-ions are attracted to a central charge, leading to an excess co-ions in the next layer. The 
end result is +-+-+- oscillations in the charge density until electroneutrality is reached. The 
analog of Debye correlations in the bulk is the formation of strongly correlated “zwitterion” pairs 
of oppositely charged ions (+-). 
 
Electrostatic correlations can also affect the permittivity of an ionic liquid. In a dilute electrolyte, 
we can safely use the long-wavelength permittivity of the solvent, which is dominated by the 
polarization (or alignment) of dipolar solvent molecules in an electric field. In an ionic liquid, 
however, there is no solvent, and the bulk permittivity is that of the ions themselves, which may 
be fairly small, if the ions have small dipole moments. However, electrostatic correlations can 
increase the effective permittivity via the alignment of zwitterion pair dipoles, especially if the 
electric field varies at the length scale of the ion size. In other words, electrostatic correlations 
lead to a wave-length dependent permittivity. 
 
To describe these correlation phenomena in ionic liquids, a 4th order modified Poisson-
Boltzmann equation has recently been proposed [1]: 
 

−ε(1− l 2
c ∇

2 )∇2ψ = ρeq (ψ)  (*) 
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where lc is an electrostatic correlation length. The fourth derivative term gives rise to the 
“overscreening” oscillations. This theory is consistent with experiments and simulations using 
ρeq (ψ)  for a lattice gas to account for “crowding” due to excluded volume and is convenient for 
mathematical modeling of RTIL. 
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FIG. 2 TOP: Structure of the ionic-liquid double layer (in color) predicted by the modified Poisson equation (*), in 
agreement with molecular dynamics simulations. (a) At a moderate voltage, V 1⁄4 10kBT=e (0.26 V), the surface 
charge is overscreened by a monolayer of counterions, which is corrected by an excess of coions in the second 
monolayer. (b) At a high voltage, V 1⁄4 100kBT=e (2.6 V), the crowding of counterions extends across two monolayers 
and dominates overscreening, which now leads to a coion excess in the third monolayer. Because of electrostriction, 
the diffuse double layer (colored ions) is more dense than the quasineutral bulk liquid (white ions). BOTTOM: Ion 
profiles obtained by solving (*) at high voltage, showing the structures of the top figure.
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