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1 Double-layer Capacitance 

1.1 Stern Layer 

As was discussed in the previous lecture, the Gouy-Chapman model pre­
dicts unphysically large counter-ion concentrations at large potentials. As 
an example, at 2.5 V, which is a typical battery electrode potential, counter-
ion concentrations predicted by Gouy-Chapman would be on the order of 
e100 ∼ 1043, which is clearly impossible. The central problem is that the 
Boltzmann distribution upon which Guoy-Chapman is based only on the bal­
ance between electrostatic attraction of the counter-ions towards the charged 
surface and diffusion of them away from it. This approach does not take 
into account near range effects due to close packing of ions. For zeta po­
tentials much larger than the thermal voltage, the electrostatic attraction 
becomes the dominant force in this model, and the infinitesimally small ions 
pile up infinitesimally close to the surface. In 1924, Stern came up with 
a model that addressed this problem. He proposed that a finite molecular 
size could be introduced into the model by requiring that there was some 
distance of closest approach to the surface. This distance was defined as hs, 
and the region contained in that distance is commonly called the compact 
layer. The physical meaning of this model is not precisely defined, but it 
has been suggested that it is caused by a sphere of solvated water molecules 
attached to the ions. At sufficiently high voltages, this solvation layer has 
been shown to break down, leading to ions adsorbing onto the surface at an 
“inner Helmholtz” plane. This structure is illustrated in figure 1. 

As was discussed in lecture 25, the dielectric constant is known to de­
crease for aqueous solutions at high electric fields due to the alignment of the 
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Courtesy of Wiley. Used with permission. 

Figure 1: Figure from Newman and Thomas-Alyea. Electrochemical Sys­
tems, 3rd Edition. 2004. The struction of a Stern Model double layer. The 
inner and outer Helmholtz plane act as planar capacitors in series with the 
diffuse layer. 

water molecule dipoles. Rather than implementing a non-uniform dielectric 
constant, this model assumes that within the compact layer, the dielectric 
constant is some constant ε " εbulk. This approximation is quite reason­
able since the compact layer is generally only one or two molecules thick, so 
making a more detailed continuum analysis of the dielectric constant would 
be taking the mean field approximation beyond its valid domain. 

With these two assumptions in place, the compact layer takes the form 
of a parallel plate capacitor, with opposite charge lining up on the surface 
and on the Stern plane. The capacitance (per unit area) of such a system is 
well known, and can be written Cs = εs/hs. This capacitance lies in series 
with the diffuse double layer capacitance CD. Together, these two capaci­
tances form the canonical model for modeling double layers, and describe a 
wide variety of conditions reasonably well. For convenience, we define the 
following dimensionless group: 

cD 
0 ε/λD λsδ = = = . (1) 
cs εs/hs λD 

Where λS = ε
ε 
s 
hs is the effective stern layer thickness, taking into account 

the variation in dielectric constant, and c0 
D = ε/λD is the Debye-Hückel 

capacitance of the diffuse layer, which is equivalent to the Gouy-Chapman 
capacitance for low potentials. This parameter is extremely important in 
the model, as it describes the relative importance of the diffuse layer and 
the Stern layer. 
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1.2 Gouy-Chapman-Stern Model 

To describe the total capacitance of this model, we simply model the system 
as the two capacitances in series, ignoring for the moment any effects due 
to the inner Helmholtz plane. Then the total capacitance can be written: 

1 1 1 
= + . (2) 

c cs cD 

We will also split up the potential drop∆ φ into two separate components, 
describing the drop across the stern layer and the diffuse layer, respectively, 
so that: 

∆φ = ∆φs + ∆φD. (3) 

We have previously derived expressions for cs and cD, assuming a Gouy-
Chapman diffuse layer: 

ε
cs = s (4) 

hs   
 zeζ 

c 0
D = cD  cosh 

(
 

2k T 

)
. (5)

B

We can now solve for the total capacitance of the system, and then simplify 
in terms of our dimensionless parameter δ: 

c
 D c =   

cD/cs + sech zeζ 
2kB T 

c0 

c = D

( )

δ + sech 
( . (6) 

zeζ 
2kB T 

This expression closely matches the Gouy-Chapman

)

 result for low potentials, 
but the Stern layer provides a hard limit on the overall capacitance: it cannot 
exceed the Stern-Layer capacitance under any circumstance. This avoids the 
non-physical behaviors predicted by the Gouy-Chapman model. 

1.3 Grahame Model 

In 1948, Grahame performed a series of experiments on liquid mercury drop 
electrodes submerged in an electrolyte. Grahame used employed electrowet­
ting, or the impact of applied potential on surface tension, to back out the 
capacitance of the double layer as function of potential. Figure 3 shows a 
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Figure 2: Double layer capacitance of a Gouy-Chapman-Stern (GCS) double 
layer and a Gouy-Chapman (GC) double layer as a function of potential drop 
across the double layer. At low potentials, the GCS model agrees with the 
GC model, but at high potentials, the Stern capacitance limits the overall 
capacitance (in this case, δ = .1, and cs = 10cD
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Figure 3: Figure from Newman and Thomas-Alyea. Electrochemical Sys­
tems, 3rd Edition. 2004. Results from Grahame’s 1948 mercury drop capac­
itance measurements. At low ionic strength, the hyperbolic cosine functional 
behavior is observed. At higher ionic strength, other more complicated ef­
fects, such as ion adsorption and finite size effects dominate. 

5


Courtesy of Wiley. Used with permission.



Lecture 26: Compact part of the double layer 10.626 (2011) Bazant 

summary of his results. Of particular interest in these results is that for 
sufficiently low ionic strength, the Gouy-Chapman relation between capac­
itance and potential is clearly visible at sufficiently small potentials, and 
was fitted well with a charge or voltage dependent Stern-layer capacitance 
in series with the Gouy-Chapman diffuse layer capacitance. 

2 Non-equilibrium Effects of the Compact Layer 

See Refs. 1-4 for more details. 

2.1 Stern Boundary Condition 

By splitting the potential drop across the double layer into two components, 
we have introduced an additional degree of freedom into the problem, and 
therefore need an additional boundary condition in order to fully specify 
the problem. On possibility is to employ Gauss’ Law at the Stern plane 
to obtain a relationship between the field just outside the Sterne plane and 
the field just inside the Stern plane. To a reasonable approximation, the 
field within the compact layer is constant, so if we define x = 0 to be the 
Stern plane, our boundary condition can be written in terms of our effective 
compact layer thickness λs as: 

∆φs = φ(x = 0) − φe = −λsn̂ ·∇φ|x=0. (7) 

This is a Robin-type or mixed boundary condition on the potential at the 
electrode is know as the Stern boundary condition, and is exactly what is 
needed to complete the problem description. If we scale this equation to λD 

and the thermal voltage kBT/e, we obtain the dimensionless form: 

φ̃ + δn̂ · ∇̃φ̃|x̃=0 = φ̃e. (8) 

In this form, it is easy to see that δ is the critical parameter for de­
scribing the nature of this boundary condition. For large δ, nearly all of 
the potential drop occurs in the compact layer, in which case the diffuse 
layer can be neglected. This is the Helmholtz limit. For small δ, the diffuse 
layer absorbs all of the potential drop, in which case the compact layer can 
be neglected. This is the Gouy-Chapman limit. When δ is neither small 
nor large, both parts of the double layer are important, and the analysis 
becomes considerably more complicated. 
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Figure 4: Potential drop across the double layer. Depending on the value
of δ, the potential drop is distributed between the compact layer and the
diffuse layer.

2.2 Faradaic Reactions

These results have far reaching implications for faradaic reactions. By def-
inition, faradaic reactions must occur at the electrode electrolyte interface;
in other words, within the double layer. It is customary to assume a neutral
electrolyte, but we have just shown that this is inaccurate. As a result,
although the distribution of voltage across the double layer is a nanoscale
phenomenon, it has far reaching macroscopic consequences on reaction kinet-
ics. A common way to address this problem is to assume that the reactions
occur within the compact layer, and that the important potential is Δφs

as opposed to Δφ. This is known as the Frumkin correction to the Butler-
Volmer equation, and will be discussed in more detail next lecture. It was
first suggested in the 1930s, but the diffuse layer voltage ζ is still commonly
left as a fitted constant, even though as shown in figure 4, ζ = φ(λs) varies
depending on applied voltage. A better approach would be to apply the
Butler Volmer equation across the compact layer, using the Stern boundary
condition to determine Δφs. This procedure eliminates the need for fitting
parameters, and allows for a complete mathematical understanding of the
double layer.
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