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1. Effective Equations for Thin Double Layers 

    For supercapacitor electrodes, convection is usually negligible, and we drop out convection 
terms here. Let’s focus on effective equations governing the transports and electrostatics in 
electrolyte. 
 

 
Figure 1. Flat Electrode Surface 

Species conservation equations, Nernst-Plank flux constitutive equations, and Poisson equation 
make up Poisson-Nernst-Plank (PNP) set of equations (bold fonts indicate that the variables are 
in vector quantity): 
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Electrostatic constrain and flux constrains on the surface specify boundary conditions. 
Electrostatic constrain can be interpreted differently, given different specified variables. When 
there is a specified amount of surface charge, we can have Gaussian law satisfying the 
electrostatic constrain: 
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 ˆ ( ) sq    n  (4) 

On the other hand, when given a specified surface potential, we can use the following 
approximation, Equation (5), instead of Equation (4), satisfying the electrostatic constrain. This 
boundary condition could be more simplified assuming negligible capacity in Stern layer. 
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We can use either Equation (4) or (5) to satisfy the electrostatic constrain, depending on 
specified variables at the surface. In addition, flux constrains of species specify the rest of 
necessary boundary conditions: 

 ˆ i iR n F  (6) 

     We now apply the above set of equations (PNP) as well as boundary conditions to the porous 
electrode with double layer thickness far thinner than the pore length scale. 

 
Figure 2. Thin Double Layer in a Pore 

     When the pore length scale is far larger than the length scale of double layer,       , we 
have separation of length scales. The mathematical structure of thin double layer problem is well 
understood from the perspective of singular perturbation analysis, in which each of two regions 
requires a different approximation. Two different approximations are constrained by matched 
asymptotic expansions. 

     We first assign notations for different variables. From now on throughout this lecture, we use 
the following notations. 

 ̂  : Concentration of Species i in Double Layer 

      : Concentration of Species i in Bulk Electrolyte 
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   ̂   : Chemical Potential of Species i in Double Layer 

      : Chemical Potential of Species i in Bulk Electrolyte 

 

      
Figure 3. Variables in Two Different Regions 

In quasi-neutral bulk electrolyte, we can use the quasi-neutral approximation, and conclude with 
zero divergence of current density. 
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     As stated above discussion, asymptotic expansions of approximated variables in two different 
regions should be matched with the corresponding pair respectively. In a pore, variables are well 
approximated by the quasi-equilibrium approximation, and chemical potentials in the two 
regions are approximately constant across the pore. 
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     Now, conditions constraining the variables in double layer can be found by defining surface 
variables as shown in Figure 3 (Stern layer capacity ignored): 
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Then the effective boundary condition using the variables above is (Chu and Bazant, 2007): 
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where             : Excess Surface Concentration of Species i per Area 

    
           : Surface Flux of Species i 

                ̃  
  

   
      : Dimensionless Chemical Potential of Species i  

    
           : Net reaction rate of Species i Using Bulk Variables (      

Total diffuse charge density can be calculated with excess surface concentrations. 

 i
i

iq z e   (14) 

 

2. Porous Electrodes 

     Formal derivation by volume averaging (homogenization) goes from the thin double layer 
equations inside pores to macroscopic partial differential equations. An appropriate model would 
involve volume averages of variables over a volume element small compared to the overall 
dimensions (L), but large than the pore structure length scale (hp). Hence, to have this model 
valid, the following condition is necessary. 

 p DL h   (15) 

 
Figure 4. Length Scales in Porous Electrode  

Not always, but for supercapacitors, we do not deplete the salt ions in electrolyte. Thus it is a 
valid approximation to assume that concentrations (    and potentials (  and   ) are varying 
slowly in the macroscopic viewpoint. This assumption justifies the volume-averaging or 
homogenization.  

     In this macroscopic treatment, we do not consider the actual geometric details of the pores. 
Rather, we define macroscopic potential in electrolyte, potential in solid material, and ion 
concentrations to be continuous and well-defined functions of space coordinates.  As a result, the 
porous electrode in this model is represented by the superposition of two continuous media 
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without microstructure, one corresponding to the electrolyte solution and the other corresponding 
to the solid material matrix. In this model both media are defined in the whole domain. 

     Therefore, in this macroscopic model, potential in electrolyte ( ) as well as potential in 
conducting solid material (  ) are defined in the whole domain of space, whereas they were only 
defined in each phase formerly. Volume-averaged concentrations in macroscopic viewpoint are 
different from and related to the concentrations in bulk electrolyte and in double layers as shown 
in the following equation (in former lectures,   ̅ was used for the concentrations in reservoirs or 
in inlet flows of fuel. In this lecture,   ̅ is used for volume-averaged concentrations in 
macroscopic viewpoint). The macroscopic ion concentrations are defined throughout the whole 
volume as well. 

 i p i p ic c a    (16) 

The first term on right hand side corresponds to the contributions from bulk electrolyte, and the 
second term is from excess concentrations in double layers. Newman’s book (3rd Ed, 2004) does 
not take account of the second term. However, this term may have significant effects especially 
when we consider supercapacitors whose charges are mostly stored in the double layers.  

     With the variables defined with the macroscopic model, we can construct the species 
conservation equations, as well as the flux constitutive equations: 

 i
i i

c R
x


 


F  (17) 

 i i i iD c   F  (18) 

We could better model the macroscopic flux equation, including the transport in double layers as 
shown in Equation (19) and Figure 5. Transport in double layer (surface transport) would be 
significant when the stored diffuse charge is large.  
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i i p i i i p i iD c D a     F  (19) 

 
Figure 5. Transport in Double Layer (Surface Transport) 
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For the macroscopic volume-averaged reaction term ( ̅ ), we could model it by using the surface 
reaction term based on the bulk concentrations and potentials: 

 ( , , )S
i p i i eR a R c    (20) 

where      ̃  
  

   
     : Dimensionless Chemical Potential of Species i 

   ̅         : Effective Diffusivity in porous medium (see Lecture 34) 

   ̅ 
          : Effective Surface Diffusivity 

  ϵp        : Macroscopic Porosity 

ap        : Surface Area Density 

     With the macroscopic concentrations and fluxes above, we can also define macroscopic 
current density as well as charge density. For the charge density, only excess surface 
concentrations matter, since bulk electrolyte keeps quasi-neutrality. 
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Due to macroscopic neutrality,  ̅    ̅       . This macroscopic charge density is 
conserved by the following equation. The negative sign in Equation (23) is due to the definition 
of current density, which defines anodic currents to be positive. 
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Now, we define electronic current density in a porous electrode. 

 e e e   j  (24) 

Due to macroscopic charge conservation, the divergence of total current is zero. 

   0e  j j  (25) 

     With the governing equations discussed above, we can now understand what the solutions 
look like for different applications. In this lecture, we focus on getting and understanding the 
solution for supercapacitors. The solutions for batteries and fuel cells will be discussed in the 
next lecture (Lecture 36). In supercapacitor applications, we do not have significant faradaic 
reactions on the electrode pore surfaces. Thus, we can get the solution, setting the faradaic 
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transference current to be zero (  ̅   ). On the other hand, for batteries and fuel cells, we can 
neglect capacitance of double layers, and focus on faradaic contributions. Also, it is required to 
model reaction products, in addition to the reacting ions and electrons. 

3. Supercapacitors 

     In a model for supercapacitors, we can neglect faradaic transference current (  ̅   ) and 
changes in salt concentration due to capacity charging of double layers (c.f. salt depletion due to 
double layer charging is considerable in capacity desalination applications). Then, we can define 
effective ionic conductivity ( ̅  , approximated to be constant. 

 p   j  (26) 

The charge conservation equation, Equation (23), then becomes: 
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Combining Equation (24) and (25),  

 2 2
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We need to employ a double layer capacitance model (CD), such as DH model or GC model, to 
relate the charge densities to the potentials. 
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Plugging in Equation (22) and (28) to the above Equation (29), we now have an equation 
governing the potentials in electrolyte and solid material. 
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Equation (30) contains two governing partial differential equations for potential in electrolyte 
( ) and potential for solid material (  ). To solve the governing equations, we need boundary 
conditions and initial conditions. The boundary conditions are shown in Figure 6. On the surface 
contacting with a separator, electron flux is not allowed and the normal component of potential 
gradient in solid material is zero. In similar manner, on the surface contacting with a current 
collector, ion flux is not allowed and the normal component of potential gradient in electrolyte is 
zero. The potential in electrolyte at the surface contacting a separator is set to be the zero 
reference value. And we set potential (V), may be a function of time, in conducting solid material 
at the surface contacting a current collector. 
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Figure 6. Boundary Conditions for Macroscopic Potentials 

     For initial conditions, let’s start from charge-potential relationship. The charge density (q) is 
related to the capacitance and the potential difference with the following equation: 

  ( , ) eq t C   x  (31) 

We consider starting from the equilibrium voltage (open circuit voltage, Vo). This leads us to 
have a uniform initial charge density throughout the porous electrode. In general, this initial 
condition can be expressed using Equation (32) and (33). 

 ( ,0) uniform oq CV x  (32) 

 ( ,0) ( ,0)e oV  x x  (33) 

     The governing equations, Equation (30), could be solved for supercapacitor applications with 
the boundary conditions shown in Figure 6, and the initial condition, Equation (33). The specific 
solutions will be discussed in the next lecture, Lecture 36. 

 

4. Transmission Line Model 

     In fact, the governing equations, Equation (30), could be equivalently obtained by using the 
transmission line model. This can be easily seen by manipulating expressions of conductivity and 
capacitance, using resistances and capacitance per length. 
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Figure 7. Macroscopic Cross-sectional Area 
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     With the newly defined parameters above, we can rearrange the governing equation, Equation 
(30), and show that this equation is equivalent to the transmission line model. By doing so, we 
can now understand which physical basis the circuit elements are based on. 
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Figure 8. Transmission Line Equivalent Circuit Model 

    In next lecture, Lecture 36, we will solve the governing equations, Equation (30) or 
equivalently Equation (34), using the boundary conditions shown in Figure 6, and the initial 
condition, Equation (33), for supercapacitor applications. 
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