
V. Electrostatics 

Lecture 25: Diffuse double layer structure 

Notes by MIT Student (and MZB) 

4/6/11 

Last time we showed that whenever λD « L the electrolyte has a 
quasi-neutral “bulk” (or “outer”) region at the geometrical scale L, where e 
there is very little mean charge density ρ = i zieci compared to the to­
tal charge density c0, or more precisely |ρ̃| = O(ε2) where ρ̃ = ρ/ec0, ε = 
λD/L « 1. In order to satisfy electrostatic boundary conditions, how­
ever, diffuse charge exists in thin quasi-equilibrium double layers (which are 
mathematical “boundary layers”). 

The ion profiles are approximately in thermal equilibrium (µi ≈constant), 
even when there is a non-zero current of fluid flow, due to the small scale 
λD « L. [Note: the double layer can go out of equilibrium if c0 → 0 at 
a limiting current, or a very fast transient can occur, e.g. high frequency 
impedance with ω ∼ D/λ2 .]D

1 Poisson-Boltzmann Equation 

We start with an assumption of quasi-equilibrium, so that the chemical po­
tential µi=constant. We separate the electric potential φ into two parts: 
φ = φ + ψ, where φ is the (approximately) constant bulk potential and ψ is 
the part due to diffuse charge. From the quasi-equilibrium assumption, the 
concentrations and charge density are in equilibrium with the spatially vary­

eqing part ψ, so ci = c (ψ), ρ = ρeq(ψ). The generalized Poisson-Boltzmann i 
equation is derived by using this charge density in Poisson’s equation (stan­
dard electro-statics) to get 

−\ · (ε\ψ) = ρeq(ψ). (1) 
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For a dilute solution, the concentrations will follow a Boltzmann distribu­
tion,   

eq zieψ 
c = νic0 exp − , (2)i kBT

where νi is the stoichiometric coefficient defined as c0,i/c0, relating the bulk 
concentration of an individual species to the bulk salt concentration c0 

where ψ = 0. Using this term for the concentrations, the definition of 
the charge density, and assuming a constant permittivity the generalized 
Poisson-Boltzmann equation simplifies to    zieψ −ε\2ψ = zieνic0 exp − . (3)

kBTi 

For small potentials (|ψ| « kBT/e), we can expand the exponential to 
get  zieψ −ε\2ψ ≈ zieνic0 1 − + O(ψ2)

kBT 
i   

≈ zieνic0 − (zie)2νic0 
ψ 
kBT 

i i  
≈ ρbulk − 

ψ 
(zie)2νic0. (4)

kB T i 

We know that ρbulk ≈ 0, and we can recognize the coefficient of ψ as 1/λ2 
D, 

so 

εkBT 
λ2 λ2 eD\2ψ = ψ, = . (5)D (zie)2νic0i

This small voltage linearisation is known as the Debye-Hückel Equation, 
and λD is called the Debye screening length. In one dimension, the Debye­
Hückel equation can be solved easily if the potential at the surface is known 
(ψ(0) = ψD), 

−x/λDd2ψ ψ ∼ ψDeλ2 = ψ r e   D dx2 =⇒ zieψD −x/λDψ(0) = ψD ci(x) = νic0 1 + kB T
e . 

We can sketch this solution for the case of a binary electrolyte: 

2
 



Lecture 25: Diffuse double layer structure 10.626 (2011) Bazant
 

The concentration profiles relax to the bulk values at large x (which could
be slowly varying, but are depicted as constant here). The integrated area
of both curves tends to the same value, so that there is no net adsorption
of charge near the surface in the limit of low voltage.

1.1 Capacitance of Double Layer (in the Debye-Huc¨ kel limit)

The capacitance is of the double layer is calculated by related the surface
charge to the surface potential. The net charge brought to the surface can
easily be calculated by integrated over the charge density:

∞ (zie)2νic0 ∞ ε ε
q =

∫
ρ(ψ(x))dx = D

k T

∫
ψ(x)dx = λDψ ψD

λ2 ( )
B 0i

− =
0 D

−
λD

We expect that the net

∑
charge in the double layer should balance the surface

charge, so this calculated value is also the surface charge. The capacitance
is then calculated using its definition

dq
CD ≡ s dq

=
dψD

− .
dψD

Thus, the capacitance in the Debye-Huc¨ kel limit is
ε

CDHD = . (6)
λD

Interestingly, the double layer behaves like a parallel plate capacitor of width
λD.
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2 Double Layer at High Voltage

At large voltages, we cannot linearise the Poisson-Boltzmann equation as
above. Instead, we have to solve the full nonlinear problem, which is
straightforward for the case of a symmetric (z : z) dilute electrolyte in one
dimension, which is referred to as the Guoy-Chapman Model. The Poisson-
Boltzmann equation in this case is

d2ψ−ε = ρ = c ze
(
e−zeψ/kBT − ezeψ/kBT

eq 0
dx2

)
.

We first non-dimensionalize using the thermal voltage scale (ψ̃ = zeψ/kBT )
and the Debye length (x̃ = x/λD) yielding

d2ψ̃
= ψ̃′′ = sinh ψ̃ = −ρ.̃ (7)

dx̃2

This differential equation can be integrated by multiplying both sides by ψ̃′

and integrating to get

ψ̃′′ = sinh ψ̃

ψ̃′′ψ̃′ = sinh ψ̃ψ̃′

1
(ψ̃′)2 = (cosh ψ̃ − 1) (since ψ̃′ → 0, ψ̃ → 0 as x̃

2
→∞)

1
(ψ̃′)2 = 2 sinh2(ψ̃/2)

2
ψ̃′ = ψ̃−2 sinh( /2).

We could integrate further to get the potential, but we are most interested
in the effect on capacitance, which we can find from this result. The total
charge can be calculated with

q =
∫ ∞

ρdx = −
∫ ∞ d2ψ dψ

ε dx = ε
2

0 0 dx dx

∣∣
.

x=0

Plugging in the value of ψ̃′ from above, we get

∣∣

q̃ = −2 sinh(ψ̃D/2)
dq̃

c̃D = s = cosh(ψ̃
dψ̃

D/2).
D
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Finally, we bring back the dimensional quantities to get

GC ε
(
zeψD

CD = cosh
λD 2kBT

)
(8)

As expected, for small ψD this result simplifies to the Debye-Huc¨ kel limit
from above. We can plot these equations to get to get an idea of how these
various limits compare:

At large potentials ions begin to concentrate at the strongly charged surface
and molecular crowding effects take over, indicated as the dashed line.
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