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1 Transport in Solids 

1.1 Diffusion 

The general model of chemical reactions can also be used for thermally 
activated diffusion. 

Figure 1: Particle diffusion by thermally activated transitions 

Here the excess chemical potential acts like the potential energy of par­
ticle state. Thermally activated transition without drift or bias implies a 
random walk phenomena where the diffusivity is a function of mean-average 
time between steps and is given by: 
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where∆ EA = ETS  − Emin is the activation energy barrier. 

1.1.2 Ideal solid solution (Lattice gas) 

Model:

Consider a lattice gas model where the transition state requires two vacan­

cies. Then we have,


Diffusivity

∆x2


D = (1)
2τ 

τ =mean time between transitions 

The mean average transition time is a function of the potential energy gap 
between the transition state and stable original state. 

ex ex


kBT
τ = τ0e
( 

µTS  −µ 
) = τ0 

γTS  (2)
γ 

1 ∝ T = attempt frequency for transitions, and recall, µex = kBT ln γ.τ0 

Finally, we can now write diffusivity of solids in terms of activity coeffi­
cients. 

∆x2 γ 
D = 

2τ0 γTS  
(3)


We go ahead and consider a few specific cases to further simplify the diffu­
sivity expression. 

1.1.1 Dilute limit 

Commonly accepted hypothesis here is that γ and γTS  do not depend on 
concentration, c. 
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γ 
D = f(c, T,σ , ..) = D 0 (6)

γTS  

Example: σ =stress tensor. Then∆ EA = ∆E0 
 + σ : εA, where εA  A  is the 

activation strain tensor, which describes the shape of the transition state. 
=⇒  stress-assisted diffusion in solids 
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Figure 2: Lattice gas transition state with two required vacancies 

∴ D = D0(1 − 
c 

) (5) 
cmax 

The factor (1 − c ) can be understood as the condition probability cmax 

that the target site (“state 2”) after the step is vacant, given that particle 
starts at a certain position (“state 1”). 

1.1.3 General case 



Lecture 21: Transport in solids and concentrated solutions

10.626

 

(2011)

 

Bazant

 

1.2 Drift 

We now look at diffusion when there is a gradient in chemical potential as 
a function of x. 

Figure 3: Particle drift due to gradient in chemical potential


Figure 4: Particle crossing the transition state
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1 
V = : cell volume (7) 

cmax 

Ax : cell area (8) 
V

∆x = (9)
Ax 

Flux, F = R , where R =reaction rate for net drift in the x direction Ax 

 = ( −(µex (x)−µ(x− ∆x ))/k T − −(µex (x)−µ(x+ ∆x 
R R e   B 

0 TS 2 e TS  ))/k2 B T ) (10) 

R0 = 1 (since the probability of making the transtion from barrier is 1) 2τ0 2 

Assume µ(x) is slowly varying at the molecular scale. 

∆x ∆x ∂µ(x) 
=⇒  µ(x ± )  µ(x)  (11) 

2 
$ ±

2 ∂x

µ(x) = k BT ln a(x) = k B T ln(γc/cmax) and | ∆x ∂µ  kBT ∂x |% 
 

1

 1 
x ∆µ( − ∆  x x ) µ(x+ ) 

∴
2 2 

 F (x) =  e k T  e k T 

2
B B

τ0AxγTS( x) 
−

 

]

− sinh( ∆x ∂

[

µ  µ(x) 

= 2kB T ∂x )e k T B

τ0AxγTS  

c(x)V γ(x) ∆x ∂µ
= 
−

sinh( )
τ0Ax γTS( x) 2kB T ∂x 

∆x2 γ(x) c(x) ∂µ(x) 
= −( )( )

2τ0 γTS( x) kB T ∂x
D ∂µ 

= −( )c (12)
kBT ∂x 

Here, ∂
∂
µ
x =generalized/thermodynamic force. From a fundamental pos­

tulate of nonequilibrium thermodynamics, we know: 

F = −Mc
∂µ 

(13)
∂x


where M is the mobility (velocity/force=1/drag)
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We see that the thermodynamic driving force blows up as c → cmax

due to strong effect of excluded volume. However, the tracer diffusivity 
goes to zero in the same limit due to the lack of available vacancies for 
particle steps, D = D0(1 − c ). This leads to a remarkable c cancellation 
of

max 

 nonlinear effects, such that the chemical diffusivity is precisely constant 
for all concentrations and equal to the tracer diffusivity of particles or holes 
in isolation: 

∂c 
F = −D0	 (16)

∂x 
Fick’s law 

1Einstein originally derived this relation for the special case of Brownian motion of a 
dust particle in air by equating the mobility (drift velocity per gravitational force) with 
the inverse of the Stokes drag coefficient for rigid sphere in viscous flow, M−1 = 6πηR. 
This allowed him to predict the diffusivity D = kB T/6πηR in terms of the fluid viscosity 
η and the particle size R in good agreement with experiments later done by Perrin (who 
earned the Nobel Prize as a result, due to the importance of this theoretical verification 
in establishing the molecular nature of matter). 

This implies the Einstein relation1 

MkBT = D	 (14) 

The mobility of a tracer is thus generally related to its diffusivity, even 
in a concentrated solution (or solid). 

Example: Solid solution/Lattice gas 

µ = kB T ln( c )cmax−c 

∂µ [1 1 ] ∂c 
= c = kBTc +⇒ 

∂x c cmax − c ∂x 

= ( 	
kB T 

) 
∂c 

1 − c ∂x cmax 

D ∂c∴ F (x) =  −
(1 − c ) ∂x	

(15) 
cmax 

6 



Lecture 21: Transport in solids and concentrated solutions

10.626

 

(2011)

 

Bazant

 

More generally in a crystal, if we assume D = D0(1 − c ) for a lattice cmax 

       

∂µ
F = −Mc  

∂x 
D0cmax c c ∂µ 

= −( )( )(1 − ) (17)
kBT cmax cmax ∂x 

gas, then for any model of µ(c, x, ...),

A conservation law based on this flux 

∂c 
+ 

∂F 
= 0  

∂t ∂x 

yields the suitable form of the Cahn-Hilliard equation for a solid solution or 
lattice gas. (See lecture 38) 

2 Concentrated Solution Theory 

Recall, chemical potential in a concentrated solution is given by: 

µ = kT ln(γc) 
= kT ln γ +kT ln c ︸

excess
︷︷ ︸ 

(18) 

Therefore, the flux F in a concentrated solution is: 

∂µ
F = −Mc  

∂x 
D ∂µ ∂c 

c= −
kBT ∂c ∂x 
D [kBT ∂ ln γ ] ∂c 

= −
kBT

c 
c 

+ kB T 
∂c ∂x 

(19) 

This is rewritten as, 

∂c 
F = −Dchem(c) (20)

∂x 

Here, Dchem has contributions from two effects. 
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D
[ ∂ ln γ 

chem = D ︸︷︷︸1 + (21)
∂ ln  c  Fick’s law 

concentrated

]

︸
 
︷︷
solution

︸
 effects 

where D = D γ
0 γTS  
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