[V Transport Phenomena

Lecture 21: Solids and Concentrated Solutions
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1 Transport in Solids

1.1 Diffusion

The general model of chemical reactions can also be used for thermally
activated diffusion.

Figure 1: Particle diffusion by thermally activated transitions

Here the excess chemical potential acts like the potential energy of par-
ticle state. Thermally activated transition without drift or bias implies a
random walk phenomena where the diffusivity is a function of mean-average
time between steps and is given by:
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Diffusivity
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7 =mean time between transitions

The mean average transition time is a function of the potential energy gap
between the transition state and stable original state.
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710 o T = attempt frequency for transitions, and recall, u** = kT In~.

Finally, we can now write diffusivity of solids in terms of activity coeffi-
cients.
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We go ahead and consider a few specific cases to further simplify the diffu-
sivity expression.
1.1.1 Dilute limit

Commonly accepted hypothesis here is that v and y7g do not depend on
concentration, c.
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whereA E4 = Epg — Epipn is the activation energy barrier.

1.1.2 Ideal solid solution (Lattice gas)
Model:

Consider a lattice gas model where the transition state requires two vacan-
cies. Then we have,
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Yrs = (IEC/Cmaz)2
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Figure 2: Lattice gas transition state with two required vacancies
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The factor (1 — ;%) can be understood as the condition probability

[

that the target site (“wéatate 2”) after the step is vacant, given that particle
starts at a certain position (“state 17).

1.1.3 General case

D= f(c¢,Ta,.) = Dy—— (6)
- yrs
Example: g =stress tensor. ThenA Ey = AEB‘ + 0 : €4, where €4 is the

activation strain tensor, which describes the shape of the transition state.
= stress-assisted diffusion in solids
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1.2 Drift

We now look at diffusion when there is a gradient in chemical potential as
a function of x.

urs = kgTinyrs

Figure 3: Particle drift due to gradient in chemical potential

Figure 4: Particle crossing the transition state
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V= : cell volume (7)
Cmazx
A, : cell area (8)
Vv
Ar = —
P-4 0

Flux, F = A%v where R =reaction rate for net drift in the x direction
R = Ro(e~Wis@—nl@=S0)/ksT _ o~(ufs@)-pa+5)/ksTy  (10)
Ry = % (since the probability of making the transtion from barrier is %)

Assume p(z) is slowly varying at the molecular scale.
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Here, % =generalized /thermodynamic force. From a fundamental pos-
tulate of nonequilibrium thermodynamics, we know:

o
F——M— 1
“or (13)

where M is the mobility (velocity/force=1/drag)
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This implies the Einstein relationl

MkgT = D (14)

The mobility of a tracer is thus generally related to its diffusivity, even
in a concentrated solution (or solid).

Example: Solid solution/Lattice gas

m = kBTln( £ )
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We see that the thermodynamic driving force blows up as ¢ — ¢Cnaz
due to strong effect of excluded volume. However, the tracer diffusivity
goes to zero in the same limit due to the lack of available vacancies for
particle steps, D = Dy(1 — Cmcm). This leads to a remarkable cancellation
of nonlinear effects, such that the chemical diffusivity is precisely constant
for all concentrations and equal to the tracer diffusivity of particles or holes

in isolation:

Oc
F=-Dog’ (16)

Fick’s law

!Einstein originally derived this relation for the special case of Brownian motion of a
dust particle in air by equating the mobility (drift velocity per gravitational force) with
the inverse of the Stokes drag coefficient for rigid sphere in viscous flow, M~! = 67nR.
This allowed him to predict the diffusivity D = kg7 /67mnR in terms of the fluid viscosity
n and the particle size R in good agreement with experiments later done by Perrin (who
earned the Nobel Prize as a result, due to the importance of this theoretical verification
in establishing the molecular nature of matter).
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C

More generally in a crystal, if we assume D = Dy(1 — ) for a lattice

gas, then for any model of u(c,z,...), "
O
F=—-McE
“or
Docinag c c &u
= 1- e 17
(Prma)( o)1 - ) 2h (17)

A conservation law based on this flux

dc  OF

ot tar 70

yields the suitable form of the Cahn-Hilliard equation for a solid solution or
lattice gas. (See lecture 38)

2 Concentrated Solution Theory

Recall, chemical potential in a concentrated solution is given by:

= kT In(vc)
=kTInvy+kTInc
——

Excess

Therefore, the flux F' in a concentrated solution is:

This is rewritten as,

(20)

Here, D.pepn has contributions from two effects.
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dln~y
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concentrated solution effects

Dchem:D \ 1 , +

Fick’s law

(21)

where D = Dy

s
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