
IV. Transport Phenomena 

Lecture 19: Transient Diffusion 

MIT Student 

In this lecture we show how to use simple scaling arguments to approx­
imate the solution to transient diffusion problems, which arise in electro­
chemical energy systems. In each case, we will also briefly mention the 
related results from exact solutions to the diffusion equation to show how 
well the scaling analysis works. For further reading, see Bard & Faulkner, 
Electrochemical Methods. 

1 Response to a Current Step 

1.1 Sand’s Time 

Suppose we have a cell and we turn on the current at time t = 0,  I(t) =  Iθ(t), 
where θ(t) is the Heaviside step function, and I is above the limiting current, 
we observe the concentration profiles indicated in Fig. 1. This current can 
be sustained for an amount known as ‘Sand’s time’, which occurs when 
c(x = 0)  → 0 and  V → 0. 

This is solved in 2009 previous notes and in Bard & Faulkner, Electro­

chemical Methods. Here we give a simple scaling analysis for tsand: √
FtSince ∆x ∼ Dt and the A ∼ Ft  ∼ ∆x∆c, and  thus  ∆c ∼ √ 
Dt 

= c0 

at tsand. 
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The exact solution to the diffusion equation is tsand = π D 
( 

c0neA )2 
.4 I


Scaling arguments are very powerful! 
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Figure 1: Top: We display how the concentration as a function of space 
progresses in time after we turn on a constant current I > Ilim at t = 0.  
tsand is the point in time beyond which the current I cannot be sustained 
anymore. since the concentration gradient cannot be maintained anymore 
once c(x = 0)  = 0.  Bottom:  This  is  a  magnified  version  of  the  top  figure.  
The shaded region is the total amount of material transportedl and grow as 
Ft. The  area  of  the  shaded  region,  A, is  proportiona  to  ∆c∆x. 
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1.2	 Chronopotentiometry (Voltage vs time at constant cur­
rent) 

tOur scaling analysis implies c(0) 
∼ 1 − for I > Ilim. Both  the  Nernst  

c0 tsand 

equilibrium voltage and the activation overpotential tend to have logarithmic 
tdependence ∆V ∼ ln c(0) 

∼ ln 1 − as c(0) 0, for I > Ilim. 
c0 tsand 

→ 

t 
0

 I < Ilim

 I > Ilim

 V -> steady state 

V(c0) 

tsand 

!V~V(c0 sand)) 

Figure 2: V (t) for  values  of  suddenly  applied  I < Ilim, I = Ilim and I > Ilim 

respectively. For small times, ∆V ∼ V (c0) 1 − t . For  large  times,  
tsand 

I < Ilim leads to a steady state voltage; I = Ilim leads to a voltage hitting 
0; and I > Ilim diverges logarithmically at Sand’s time. 

1.3	 Galvanostatic Intermittent Titration Technique (GITT) 

Batteries can be tested by small slow current pulses, and the relaxation is 
fitted to Sand’s solution of the diffusion equation to infer the diffusivity 
D(c0) vs state of charge c0. In  Fig.  3,  we  show  the  input  current  pulses  and  
the voltage response. The dashed curves indicate the open-circuit voltage 
and the voltage response for some fixed I > 0 respectively.  The  two  curves  
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form an envelope that bounds the actual function V (It). The zigzag curves 
t thave a 

tsand 
or 1 − 

tsand dependence as the V jumps back and forth 

between the OCV dashed curve to the I > 0 dashed  curve.  

t

I 

Q = It

 V 

I > 0 OCV (I = 0) 

Figure 3: GITT: The dashed curves indicate the open-circuit voltage and 
the voltage response for some fixed I > 0 respectively.  

2 Response to a Voltage Step 

2.1 Cottrell Equation 

For linear response, this is like a sudden concentration step at  the  electrode  
surface. 

We have the following boundary conditions: 
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Figure 4: If we fix the concentration at the boundary to be c1, we  observe  
how the current responds in time. 

c(x, 0) = c0 

c(0, t) =  c1 

∂c ∂2c 
= D 

∂t ∂x2 

By scaling analysis, we have 

I ∂c c0 − c1
F = 

neA 
= D 

∂x 
(0, t) ∼ D √

Dt 

Thus, 
D 

I(t) ∼ neA∆c 

√
π 

√

t 
The exact solution is given by: 

( ) 
c(x, t) − c1 

c0 − c1 
= erf 

x 
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F = D (0, t)

∂x 
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= ∆c 
2 Dt 
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where erf (z) =  √2 
π 

∫ 
0 
z 
e−x2 

dx. Thus,  we  obtain  the  Cottrell Equation: 

D 
I(t) =  neA∆c 

πt 

Again, this result is the same as the one obtained from scaling analysis 
except for a factor of 

√
π. 

2.2 Potentiostatic Intermittent Titration Technique (PITT) 

We can characterize a battery by slow small voltage steps to infer D(c0). 
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Figure 5: The input voltage steps and current response, which goes  as  D

t , 

are shown for PITT. D(c0) can  be  inferred  from  such  measurements.  
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