
III. Transport Phenomena 

Lecture 17: Forced Convection in Fuel Cells (I) 

MIT Student 

Last lecture we examined how concentration polarisation limits the cur­
rent that can be drawn from a fuel cell. Reducing the thickness of the 
porous electrode will increase this limiting current, but we want to increase 
the limiting current without changing the geometry of the cell. We can do 
this by imposing a fluid flow, as convection can work faster than diffusion 
alone. We are interested in the case of high power, i.e. Pmax ∼ IlimVO. 

1 Membrane-Electrode Assemblies 

Figures 1 and 2 show side and top views of a membrane-electrode assembly 
used to produce a convective flow. 

The reactant gas is forced into inlet channels and drawn out of separate 
outlet channels, and can only pass between the two by travelling through 
the porous electrode. This moves gas past the catalyst layer, and some of 
the gas will reach the catalyst and react. 

2 General Analysis 

Flow velocity is related to the pressure gradient by Darcy’s law: 

u = −K∇p. (1) 

K is the permeability of the fluid, just a constant. For incompressible flow, 
we also have 

∇.u = 0. (2) 
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Figure 1: Membrane-electrode assembly
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Figure 2: Interdigitated flow channels
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Even if the fluid is actually compressible, this equation must hold in the 
steady state where the amount of fluid at a particular location is not chang­
ing in time. Combining these two equations, we have 

∇2	 p = 0. (3) 

To maintain a steady state, the total rate at which concentration is changing 
due to convection and diffusion must be zero, i.e. 

u.∇c = D∇2 c	 (4) 

⇒ −K∇p.∇c = D∇2 c.	 (5) 

There are different boundary conditions at the inlet and outlet, on the walls 
and on the membrane. 

•	 At the inlet and outlet, pressure and concentration are both fixed. 
Pressure is pin at the inlet and pout at the outlet, while we can take 
concentration to be the same in both places, c̄. 

•	 On the walls, n̂.∇p = 0, i.e. there cannot be any velocity through 
the walls. Additionally, n̂.∇c = 0: this is required in the steady state 
because any gradient in this direction would be destroyed by diffusion, 
because there is no convective velocity in this direction that could 
oppose diffusion. 

•	 On the membrane as on the walls, n̂.∇p = 0. In this case, however, 
n.Dˆ ∇c = R. n̂.D∇c is the rate at which particles are hitting the 
membrane, while R is the rate at which they are reacting: these must 
be the same in equilibrium. If we are running at limiting current, 
we will also have c = 0. If, on the other hand, we wanted to find 
the voltage at some sub-limiting current, we would have to solve the 
equations numerically. 

Figure 3 shows what the flow will look like. The solid lines are stream­
lines, showing the direction of the velocity field, while the dashed line is a 
concentration contour. It marks the edge of the depletion layer, where con­
centration goes from approximately c̄ outside the layer to less than c̄ within 
the layer. 

The differential equations can be solved by conformal mapping (as proven 
in [1]). The procedure is demonstrated in figure 4. We begin by making a 
conformal map from the real geometry to one where the problem is much 
simpler. A conformal map is one where we can write the coordinates of a 
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Figure 3: Flow profile in equilibrium 

point in the new system as a function of the coordinates of the equivalent 
point in the old system, and this function is analytic. We then solve the 
problem in the simple geometry, in this case a rectangle with the inlet and 
outlet at the two ends, and use the inverse map to go back to the original 
geometry. 

See [2] for the solution of the problem in the simple geometry. Alter­
natively, we can discover a lot about the solution with some simple scaling 
analysis. 

3 Scaling Analysis 

The problem is plug flow (flow at a constant velocity) of concentrated fluid 
over an absorbing surface. Given that a depletion layer forms, we’re in­
terested in the thickness of this layer as a function of distance from the 
beginning of the absorbing surface, δ(x) in figure 5. 

The convection-diffusion equation describing this situation is 

∂c 
( 

∂2c ∂2c 
) 

u = D + . (6)
∂x ∂x2 ∂y2 

We treat the problem using a dominant balance: considering the two terms 
that are most significant. Far from the beginning of the absorber, convection 
dominates diffusion in the x direction, and since the layer is long and thin, 
concentration will change more rapidly in the y direction than in the x 
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Figure 4: Solving the convection-diffusion problem by conformal mapping
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Figure 5: Convection-diffusion boundary layer thickness
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direction. Thus 
∂c ∂2c 

u
∂x 
≈ D 

∂y2 . (7) 

We can estimate the size of these terms: the gradient of concentration in the 
x direction must be around c̄/x, while the second derivative of concentration 
in the y direction will be around c̄/δ2 . Subsituting these values, we have 

c̄  c̄  
u

x 
∼ D

δ2 (8) 
√

Dx 
δ ∼ . (9) 

u 

We can define dimensionless variables δ̃  and x̃ by dividing δ and x by H, 
the height of the flowing fluid. We then have the relation 

√ 
x̃ 

δ̃  ∼ 
Pe 

, (10) 

where Pe is the Peclet number, which measures the relative importance of 
convection and diffusion and is defined by 

uH
Pe = . (11)

D 

Flux density is 

∂c 
R = D (12)

∂y 
c̄  ∼ D (13)
δ√
uD ∼ c̄  
x

. (14) 

The dimensionless flux is known as the Sherwood number and is defined by 

R
Sh = . (15)

Dc̄/H 

From equation 14, we find √
Pe

Sh ∼ 
x̃ 

. (16) 

We are particularly interested in the limiting current, which is the flux 
integrated over the area of the absorbing surface, multiplied by the charge 
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transferred in each absorption reaction. If the surface has width W and 
length L, the limiting current is 

Ilim ∼ neW c̄
√

uDL. (17) 

If we make this dimensionless by dividing by neAcD/H (A LW is the ¯ = 
area of the absorbing surface), which is the limiting current in the absence 
of flow, we find 

Ĩlim ∼
√

Pe 

√
H

. (18)
L 

It is thus possible to boost the limiting current by increasing the flow veloc­
ity. 

There is a trade off: the proportion of fuel utilised. If we define γF to 
be the ratio of fuel consumed to fuel input, we find 

γF = 
Ilim (19)

neuHW c̄  
1 ∼ √

PeH/L 
(20) 

1 ∼ 
Ilim 

. (21)˜

We therefore see that even though it is possible to increase the limiting 
current, this results in a corresponding decrease in the fuel utilisation. 

4 Similarity Solution 

Although our scaling analysis was very useful, it is also possible to solve 
equation 7 exactly. If we define τ = x/u, we get 

∂c ∂2c 
= D , (22)

∂τ ∂y2 

the diffusion equation. The boundary conditions are c(y, 0) = c̄ and c(0, τ) =  
0. There is a similarity solution, c(y,τ ) =  f(y/

√
τ). This solution, which 

can be found by various methods such as substituting the similarity form 
into the partial differential equation to get a (separable) ordinary differential 
equation, is 

( 
y 

) 

c = c̄ erf 
2
√

Dτ 
(23) 

( ) 

= c̄ erf 
y 

. 
2
√

Dx/u 
(24) 
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The exact reaction flux is 

∂c 
R = D (0, τ )	 (25)

∂y√
uD

= c̄ .	 (26)
πx 

Comparison with equation 14 shows that solving the equation exactly only 
changed the approximate result by a factor of 1/

√
π. 

It is also possible to solve the full convection-diffusion equation, Eq. (6), 
analytically for geometries of interest for fuel cells. Near the leading edge of 
a membrane (where the flow impinges), there is a similarity solution, which 
can be mapped to different geometries (Fig. 2 of Ref. [1]). There are also 
accurate asymptotic approximations of the solution for a finite membrane, 
which can also be mapped to other geometries [2]. These analytical solutions 
also have interpretations in viscous fluid mechanics (where the Reynolds 
number plays the role of the Peclet number); for example, the ”Burgers 
vortex sheet” (Fig. 1of [3]) is analogous to the concentration profile near 
the stagnation point where the fluid impinges on the membrane, and “vortex 
fishbones” (Fig. 4c-d of [3]) correspond to periodic recirculating flows over 
a membrane, as in the fuel cell assembly sketched above. 
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