
III. Reaction Kinetics 

Lecture 14: Faradaic Reactions in Concentrated 
Solutions 

1 Reactions in Concentrated Solutions 

Note: Please see the course notes from 2009 for a detailed stochastic theory 
and formal derivations of reaction rates. 

Until now, we have assumed that forward and backward reaction rates 
are proportional to concentrations, which is appropriate for chemical kinet­
ics in a dilute solution. From our discussion of thermodynamics, we might 
expect to simply ”replace concentrations with activities” to describe con­
centrated solutions in equilibrium, but this not sufficient to describe the 
dynamics of reactions out of equilibrium, since we also need to include de­
scribe concentrated-solution effects on the transition pathway. 

As a starting point, it is useful to introduce the concept of the excess 
chemical potential of state i defined by 

µi = kBT ln Ci + µ ex 
i (1) 

which is related to the activity coefficient γi via 

µ ex 
i = kBT ln γi (2) 

where Ci is the concentration of state i (equal to the product of component 
concentrations, if there is more than one chemical species, as before). For 
concreteness, we could consider a lattice gas, where the chemical potentials 
are defined per lattice site, but the derivation is more general. From our 
lattice gas theory, we recognize kB T ln Ci as the (entropic) chemical potential 

exof a dilute, non-interacting gas. Therefore, µ contains all interaction free 
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energies, between the reactants and each other (for example, contributions 
from excluded volumes) and the external system (for example, contributions 
from applied potentials). We conclude that µex(x) acts like the energy U(x) 
in a dilute solution, by providing generalized thermodynamic forces on the 
reactants, including entropic compositional effects. 

In this interpretation, it is important to note that here (and throughout 
the class) the thermodynamic quantities we denote by µi is the diffusional 
chemical potential, µi = ∆

∆
N
G 

i 
, equal to the change in total free energy re­

quired to add the Ni particles needed to create state i and alter the system 
accordingly to accommodate those particles, given the constraints, e.g. with 
a fixed number of lattice sites. This is not the same as the true thermo­
dynamic chemical potential, which is the free energy to add the particles, 
without any other changes to the system. For example, we derived the 
diffusional chemical potential per particle per site in a lattice gas 

µi = kB T ln c − kBT ln 1 − c = µparticle − µvacancy, 

where the first term describes the∆ G required to create a particle and the 
second term describes the∆ G associated with generating a vacancy. 

Now consider the general situation of a transition between two quasi-
equilibrium states (free energy wells, whose depth is " kBT ), via a transition 
state, as illustrated in Figure 1. As argued above, we view the reaction 
complex (all species involved in the reaction) as performing a random walk 
in a landscape of excess chemical potential and employ the statistical theory 
of first passage over the barrier. 

The conditional probability of a forward reaction per unit time, given 
that the reactants are found in state 1, is 

1 
= r1 2 (3)

τ1 2 
→

→
ex ex)/kB T∝ e−(µTS  −µ , (4)1 

ex exassuming µTS  − µ1 $ kB T so that µ1 is a long-lived stable state at tem­
perature T . Here τ1 2 is the mean first passage time to the transition state. →
The net mean rate of the forward reaction is 

ex ex R1 2 = R1
0 

2C1e
−(µTS  −µ1 )/kB T (5)→ →
ex 

= R1
0 
→2e

−(µTS  −µ1)/kB T (6) 
(7) 
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Figure 1: Conceptual reaction diagram for an out-of-equilibrium process. 
The schematic energy function is intended to represent a landscape of ex­
cess chemical potential, taking into account compositional effects and other 
contributions to the energy landscape. 

where the probability (per time) of finding the reactants in state 1 is pro­
portional to the concentration C1 (per reaction site). The net reaction rate 
(per site) is 

R = R1 2 −R2 1 (8)→ →
ex ex 

= R1
0 
→2e

−(µTS  −µ1)/kB T −R2
0 
→1e

−(µTS  −µ2)/kB T . (9) 

By definition of thermal equilibrium, we must have µ1 = µ2 if and only if 
R = 0. Therefore, R0 

→ = R0 
→ if we have properly defined µ1 and µ2.1 2 2 1 

Thus we arrive at a general expression for the reaction rate (per site) in a 
concentrated solution: 

ex ex R = R0 

[ 
e−(µTS  −µ1)/kB T − e−(µTS  −µ2)/kB T 

] 
. (10) 

Note that CTS  , the concentration in the transition state, is effectively a 
very small constant, since that state is short-lived. By changing R0 we 

excould write µTS  in place of µTS  . 
We also have the de Donder Relation: 
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2 
(µ1−µ2)R1→ = e kB T , (11) 

1R2→

which relates reaction kinetics (left side) to equilibrium thermodynamics 
(right side). 

2 Nernst Equation 

When the mean transition rates between the two quasi-equilibrium states are 
equal (“detailed balance”), then the system is in equilibrium. We now show 
that detailed balance provides a kinetic derivation of the general form of the 
Nernst equation in terms of chemical activities, rather than concentrations 
(which are suitable only for a dilute solution), which we previously derived 
from equilibrium considerations alone. 

Consider the general Faradaic half-cell reaction 

∑ 
siM

zi → ne−, (12)i 
i 

which we write as 

R ne− + O, (13)→ 

where the left and right sides are derived from states 1 and 2, respectively, 
while R = 

∑
i siRM ziR and O = 

∑
i siOM ziO . We can separate the electro­iR iO 

static contributions to the chemical potential as follows: 

µ1 = µR + qRφ, (14) 

where µR = kBT ln aR is the chemical part and φqR = φ 
∑

i siRziRe is the 
electrostatic part, with φ denoting the solution potential. Similarly, 

µ2 = µO + qOφ − neφe, (15) 

where µO = kB T ln aO, qO = 
∑

i siOziOe, and φe denotes the electrode 
potential. The de Donder relation then implies that in equilibrium, 
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21 =  
R1→ (16) 

1R2→

= e(µ1−µ2)/kB T (17) 
qRφ−qO φ+neφe 

= 
aR e kB T . (18) 
aO 

Using charge conservation, qR = qO − ne, we obtain the Nernst Equation for 
a concentrated solution: 

∆φeq = 
kBT 

ln 
aO , (19) 

ne aR 

where∆ φ = φe − φ, which we can write as 

kB T aR/a0 
R∆φeq = V 0 − 

ne 
ln 

aO/a0 , (20) 
O 

0 

where V 0 = kB T ln 
aR . Here a0 and a0 denote the activities in the reference ne a0 O R 

O 
states. 

3 Butler-Volmer Equation 

In order to derive reaction rates as well as the kinetic anddynamic behaviors 
of a system (out of equilibrium), we require a model of the transition state. 
To that end, we make the Butler-Volmer hypothesis for the electrostatic 
energy of the transition state: 

µ ex = µA + αqAφ + (1 − α) [q0φ − neφe] , (21)TS  

where the first term on the right, µA = kBT ln γA, denotes the excess chem­
ical activity of the transition or activated state, and the second term on 
the right denotes the electrostatic energy of the transition state and is an 
α-weighted average of contributions from states 1 and 2. 

Following a derivation similar to the one previously given, we substitute 
exµTS  , µ1, and µ2 into R and use∆ φeq to exprress R in terms of the activation 

overpotential, ηact = ∆φ − ∆φeq, to obtain 
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R = 
RO (aR

α aO 
1−α

) [ 
e(1−α)neη/kB T − e−αneη/kB T 

] 
. (22)

γA 

Let I = neAR denote the current, where A denotes the dimensionless 
area or number of reaction sites. Then 

[ 
(1−α)neη/kB T − e−αneη/kB T 

]
I = I0 e , (23) 

where 

(
γαγ1−α 

) 

I0 = neACR
αCO 

1−α R O , (24)
γA 

with the term out of the parentheses representing the exchange current, 
while the term in parentheses is a correction factor for the activity coeffi­
cients. 
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