
III. Reaction Kinetics 

Lecture 12: Reaction Kinetics in Dilute Solutions 

Notes by MIT Student, re-written by MZB 2014 

March 6, 2013 

As we begin to study electrochemical energy systems out of equilibrium, 
we are first concerned with reaction kinetics. We begin by considering gen­
eral transition state theory and then applying it to Faradaic charge-transfer 
reactions at electrodes. 

1 Stochastic Theory of Reaction Rates 

state 1

state 2

U1

U2
barrier ΔU

x
reaction coordinate

The classical Transition State Theory of reaction kinetics is based on stochas­
tic processes biased by intermolecular forces. The reaction complex diffuses 
by thermal excitations through an energy landscape U(5x) (as a function of 
various reaction coordinates) to occasionally cross over an energy barrier 
UTS at the “ transition state” separating two energy minima, representing 
the initial and final states, U1 and U2. The barrier energy must be larger 
than the thermal voltage, 

ΔU1,2 = UTS − U1,2  kB T (1) 

in order to ensure that transitions are “rare events” compared to thermal 
fluctuations, so that the reactants and products spend most of the time in 
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well-defined, long-lived “states” corresponding to energy wells around the 
minima. 

The model problem of “escape” over an energy barrier from one well to 
another can be analyzed in great detail in the dilute solution limit, where 
the reactants follow independent stochastic processes (random walks) and 

1do not alter the energy landscape. The fundamental result is that the 
mean reaction rate r per molecule (events/time), equal to the inverse of the 
mean first passage time τ from the minimum to the transition state, is given 
by 

1 ∼ νe− ΔU/kB T r = (2)
τ 

in the asymptotic limit ΔU kB T . This is the familiar Arrhenius temper­
ature dependence of any thermally activated process. It can also be derived 
by arguing that the rate is proportional to the probability of finding the 

− ΔU/kB Tsystem at the transition state in a Boltzmann distribution, p ∝ e . 
This assumes local thermodynamic equilibrium, which is justified for a large 
barrier, ΔU kB T , since the system spends most of its time trapped in 
the potential well, relative to the time scale of thermal vibrations. 

The prefactor ν depends on the curvatures of the energy landscape at the 
U ffminimum, Kmin = min > 0 and transition state (saddle point), Kmax = 

−U ff
TS > 0. For example, for escape from a symmetric well, the prefactor is 

√ 
2D0 KminKTS kBT kBT 

ν = 1 + a + b + . . . (3)
πkB T ΔU ΔU 

where D0 is a diffusivity characterizing thermal noise at the molecular scale. 
The constants a and b depend on higher derivatives of the energy landscape. 
2 We can also define length scales Lmin and LTS characterizing the width 
of the potential well and the transition-state saddle region, respectively, 
via Kmin = (π/2)ΔU/L2 

min and KTS = −(π/2)ΔU/L2 and express the TS 
prefactor as � � �3/2 � �2 

� 
D0 ΔU ΔU ΔU 

ν = √ + a + b + . . . (4)
LminLTS kBT kB T kB T 

The rate is enhanced for narrow potential wells (small Lmin) due to the 
larger spring constant and higher vibrational frequency, leading to more 

1 See lectures 10-12 from 2009. 
2 a and b are derived in a homework solution online from 2009 for the Kramers escape 

problem. 
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frequent escape attempts for the same ΔU . The rate is also enhanced by a 
narrow saddle around the transition state, since the escape process will waste 
fewer attempted escapes by exploring the saddle region and falling back into 
the original well. These are typically small corrections, however, as long as 
ΔU kBT , and the primary implication of transition state theory is the 
dominant Arrhenius temperature dependence. 

2 Reactions in Dilute Solutions   
Consider the reaction siRi → sj Pj , where reactants are in state 1 and 
products are in state 2. For every reaction complex going from state 1 to 
state 2 there is a transition state with energy UTS . The state energies are:  

U1 = si,1Ui,1  
U2 = sj,2Uj,2 

For the forward (or backward) reaction, the number of such transitions   si,1 si,2(per volume) is proportional to c1 = c (or c2 = ) assuming i,1 i ci,2 
a dilute solution. So we can calculate the net reaction rate (number/time 
per reaction site) as: 

R = R1→2 − R2→1 
UT S −U1 UT S −U2 

R = ν1c1e − 
kT − ν2c2e − 

kT 

The ratio of the forward and backward rates is given by 
U1−U2R1→2 ν1c1 

kT = e 
R2→1 ν2c2 

In equilibrium, this ratio is unity (detailed balance), and we have 
c2

ΔU eq. = (U1 − U2)
eq. = ΔU0 + kBT ln 

c1 

where ΔU0 = kB T ln ν2 . This looks like the Nernst Equation! ν1 

3 Faradaic Reactions in Dilute Solutions 

3.1 Standard form of initial and final states 

Consider the general half-cell Faradaic reaction, which we write in the stan­
dard form  

− siM
zi → nei 
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where the reaction produces n electrons (oxidation) in the forward direction.
We break this into reactants (si > 0) comprising the “reduced state” and
products (si < 0) comprising the “oxidized state” of the anodic reaction.∑

z
sRjR

R,j Z
s ,i

j iO
0

O i + ne−

j

→
∑
i

By charge conservation, we have∑
sOiZOi − n = sRjzRj

where qo =
∑
sOiZOi and qR =

∑
sRjzR

∑
j .

This allows us to express the initial and final states of the reaction
(“states 1 and 2” above) as

U1 = UR =
∑

sR,j
[
U0
R,j + zR,jeΦ

]
total energy of reduced state

= U0
R + q0Φ

U + neΦ = U =
∑

s
[
U0

2 e O Oi R,i + zO,ieΦ
]

total energy of oxidized state

= U0
O + qOΦ separate electrostatic energy

3.2 Butler-Volmer Model for the transition state

The Butler-Volmer hypothesis asserts that the electrostatic energy of the
transition state is a weighted average of electrostatic energies of the oxidized
and reduced states:

UTS = U0
TS + αqRΦ + (1− α) [q0Φ− neΦe] where Φ0 is electrode potential

where

α = transfer coefficient

= weight of reduced state electrostatic energy at transition state

It is typically to assume (or infer) symmetric electron transfer, α =
(1− α) = 1 .2
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α 1-α

U
O

U + eϕ(x)O

x

although the extreme values, α = 1 or α = 0, for asymmetric electron 
transfer are also possible. 

Then if we focus on the electrostatic potential, we obtain   
si,R −[αqRΦ+(1−α)(qO Φ−neΦe)−qRΦ]/(kT ) − kc

si,O −[αqRΦ+(1−α)(qOΦ−neΦe)−qOΦ]/(kT )R = ka c ci,R e i,O e
 
i i
 

where we absorb UO into anodic (oxidation) and cathodic (reduction) reac­i 
tion rate constants, ka and kc respectively. 

Using charge conservation qO − qR = n, we finally express the Faradaic 
reaction rate in a dilute solution in the following general form 

  
si,R (1−α)neΔΦ/(kB T ) − kc

si,O −αneΔΦ/(kB T )R = ka c ci,R e i,O e 
i i 

ΔΦ == Φe − Φ = electrode potential − solution potential 

number of reactions 
R = per reaction site 

time 

For further reading, see O’Hare et al., Fuel Cell Fundamentals (Ch 3). 
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