
  

 

   

 

  

 

 

 

  

Lecture 29: Forced Convection II 

As discussed in the previous lecture, the magnitude of limiting current can be increased by 

lim~ neADc
imposing convective transport of reactant in a porous media. This is because I � 

(LL 
is the diffusion length in a porous electrode) and in forced convection, the length scale for diffusion 

is { (boundary layer thickness) which is typically much smaller than L. Last lecture, we also 

examined the transport of reactant carried into the system by a convective fluid stream and 

obtained a scaling for the boundary layer thickness in two cases: (i) Plug flow of fluid through 

inert porous media (Figure 1) (ii) Poiseuille flow with Lévêque Approximation (Figure 2). In both 

cases, reaction takes place only at the interface at y=0. 

Figure 1: Plug flow through inert porous media Figure 2: Poiseuille flow with Lévêque Approximation 
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Membrane-Electrode Assemblies: 

Figures 3 and 4 show the side and top views of a membrane-electrode assembly. The reactant gas 

is forced into inlet channels and drawn out of separate outlet channels and can pass between the 

two by travelling though the porous electrode. In this way, the reactant gas moves past the catalyst 

layer and reacts in the presence of the catalyst. 

Figure 3: Membrane-electrode assembly 

Figure 4: Interdigitated flow channels 

General Analysis:
 

In a porous medium, the flow velocity is related to the pressure gradient by Darcy’s law:
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𝑢𝑢 = −𝐾𝐾∇𝑃𝑃 (1) 

where K denotes permeability. Using the continuity equation for an incompressible fluid gives: 

∇.𝑢𝑢 = 0 (2) 

Combining Eq. 1 and 2, we get: 

∇2𝑝𝑝 = 0 (3) 

At steady state with no homogenous reaction occurring, the governing equation for transport of 

reactant (assuming constant diffusivity) is given by: 

𝑢𝑢.∇𝑐𝑐 = 𝐷𝐷∇2𝑐𝑐 (4) 

Combining Eq. 1 and Eq. 4, we get: 

−𝐾𝐾∇𝑃𝑃.∇𝑐𝑐 = 𝐷𝐷∇2𝑐𝑐 (5) 

Different Boundary Conditions are as follows: 

• Both the pressur

𝑃𝑃

e as well as concentration are known at the inlet and outlet. Pressure is  

at the inlet and 𝑜𝑜𝑜𝑜𝑜𝑜 at the outlet. Assume both at the inlet and outlet, . 
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, . However, reaction occurs at the membrane electrode 

interface. So,  where R is the rate of reaction. At limiting current condition, 

c=0 can be used as the boundary condition. 

In those situations where the differential equations become difficult to solve because of 

complicated geometry, they can be solved using a technique called conformal mapping1. This 

method can be used to map a complex geometry to a simple geometry where the differential 

equations can be solved easily. Usually, this involves writing the coordinates of a point in the new 

system as an analytical function of the coordinates of its equivalent point in the old system. The 
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problem is then solved in the simple geometry. By using an inverse map, we can get back the 

solution to our original problem. The procedure is demonstrated in Figure 5: 

Figure 5: Solving the convection-diffusion problem using conformal mapping 

Fuel Efficiency vs. Power Density: 

Last lecture, we found using scaling analysis arguments that the boundary layer thickness scales 

as: {~JD ¥ . Hence increasing the fluid velocity would decrease the boundary layer thickness 

resulting in an increase in the magnitude of the limiting current. In this section we will use scaling 
analysis to obtain order of magnitude estimate of the limiting current and the proportion of fuel 
utilized. 

Figure 6: Convective flow of fluid over a reacting surface 
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We consider the case of plug flow of fluid over a reacting surface. In last lecture, we obtained an 

order of magnitude estimate of the boundary layer thickness given by: 

(6){~ D-u 
Consider H to be the height of the flowing fluid. Then we can define dimensionless variables {-
and - by dividing { and x by H. We obtain the relation: 

(7){-~ Pe- 
where Pe is the Peclet number which signifies the ratio of convective transport rate to diffusive 

transport rate and is defined as: 

(8)Pe = uHD 
We are interested in getting a scaling for the limiting current. In the case of limiting current, 

concentration at the reacting surface, c = 0. 

Flux density, F at the reacting surface: 

(9)F = D  ac ~D cac(Y=o) {
c is the bulk concentration outside the concentration boundary layer. 

The limiting current is the flux density integrated over the area of reacting surface, multiplied by 

the charged transferred in electrode reaction. If we consider a reacting surface with width W and 

length L, the limiting current is given by: 

L (10)Ilim~ieWc f d-{o 
Substituting the scaling for { in (10) from (6), we obtain: 

Ilim~ieWc.uDL (11) 

If we didn’t have convective flow, then the limiting current in the absence of flow (only diffusion) 

would be given by the relation: Ilim,onlY diffusion = ieLWcD/H 
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We can obtain dimensionless limiting current by dividing the limiting current in the presence of 

flow by the limiting current in the absence of flow (only diffusion).  

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙~√𝑃𝑃𝑃𝑃�
𝑢𝑢
𝑢𝑢

(12) 
 

From the above scaling for the dimensionless limiting current, we find that it is possibl
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the limiting current by increasing the flow velocity. From previous lecture, we know  

So, faster flows generate larger power density due to increased 

𝑙𝑙𝑙𝑙𝑉𝑉𝑜𝑜

Next, we try to find a scaling for the proportion of fuel utilized. W

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙. 

e define 

consumed to fuel input.  

𝛾𝛾𝐹𝐹 as the ratio of fuel 

𝛾𝛾𝐹𝐹 =
𝑛𝑛𝑃𝑃𝑢𝑢𝑢𝑢
𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛𝑐𝑐

(13) 
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From the above scaling for the proportion of fuel utilized, we find that there is a tradeoff. Even 

though it is possible to increase the limiting current by increasing the fluid velocity, this results in 

a corresponding decrease in the fuel utilization. This means that though  can be increased by 

increasing fluid velocity, less of the fuel is able to diffuse to the reactin

𝐼𝐼

g
𝑙𝑙𝑙𝑙

 
𝑙𝑙

surface by the time it 

reaches the outlet at x=L. 

To summarize, increasing the fluid velocity leads to: 

• Decrease in boundary layer thickness. 

• Increase in the magnitude of limiting current. 

• Larger power density because of increased limiting current. 

• Less concentration polarization voltage losses because of increase in 

Figure 7 below). 

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 (Please refer to 

• Decrease in fuel utilization. 
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Figure 7: Plot showing decrease in concentration polarization voltage losses with increase in fluid velocity 

Hydrogen Bromine Laminar Flow Battery (HBLFB) 

Hydrogen bromine laminar flow battery2 (HBLFB) is an example of a membraneless  
electrochemical cell. The need for a membrane is eliminated in such systems by relying on laminar 
flow and slow molecular diffusion of reactants for separation of the two half-reactions. 

The two half-cell reactions in HBLFB are the oxidation of 
gaseous hydrogen at the anode and reduction of aqueous 
bromine at the cathode. The system is modeled by considering 
laminar, fully developed flow of electrolyte between two flat 
electrodes.  

We consider the follow
and cathode surface: 

Anode:   

Cathode:  

𝑢𝑢2 → 2𝑢𝑢

ing r

+

ea

2

c

𝑃𝑃

tions occurring at the anode 

+ −

𝐵𝐵𝐵𝐵2 + 2𝑃𝑃− → 2𝐵𝐵𝐵𝐵

       
− Figure 8: Flow Battery with a depletion 

layer of Bromine at the cathode surface 
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The cell voltage can be expressed as: 

𝑉𝑉

𝑉𝑉𝑐𝑐𝑛𝑛𝑙𝑙𝑙𝑙 = 𝑉𝑉0 +
𝑘𝑘
2
𝐵𝐵

𝑃𝑃
𝑇𝑇
𝑙𝑙𝑛𝑛 �

 𝑐𝑐𝐵𝐵𝐵𝐵
𝑐𝑐
2
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� + 𝜂𝜂𝑐𝑐𝑚𝑚𝑐𝑐𝑜𝑜(𝐼𝐼) − 𝜂𝜂𝑚𝑚𝑚𝑚𝑐𝑐𝑜𝑜(𝐼𝐼) − 𝐼𝐼𝑅𝑅𝑛𝑛𝑙𝑙

(15) 
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2  is the concentration of bromine at the cathode surface. From the lecture on 

“Concentration Polarization” we know the following relation: 

𝐼𝐼

𝐼𝐼(𝐷𝐷

(𝐷𝐷

)

)

= �1 −
 𝑐𝑐𝐵𝐵𝐵𝐵
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� 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷)

(16) 
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The analytical solution of 𝑙𝑙𝑙𝑙𝑙𝑙  is known by applying suitable boundary layer theory. The 

reaction kinetics for both half-cell reactions in the HBLFB are sufficiently fast and reversible, so 

the activation overpotential at both anode and cathode can be neglected. 

In this scenario, the cell voltage can be expressed as: 

𝑉𝑉𝑐𝑐𝑛𝑛𝑙𝑙𝑙𝑙(𝐷𝐷) = 𝑉𝑉0 +
𝑘𝑘
2
𝐵𝐵

𝑃𝑃
𝑇𝑇
𝑙𝑙𝑛𝑛 �1 −

𝐼𝐼𝑙𝑙
𝐼𝐼
𝑙𝑙𝑙𝑙

(𝐷𝐷
(
)
𝐷𝐷)
� − 𝐼𝐼(𝐷𝐷)𝑅𝑅𝑛𝑛𝑙𝑙

(17) 
 

References 

1. Conformal mapping of some non-harmonic functions in transport theory, M. Z. Bazant, Proc. 

Roy. Soc. A. 460, 1433-1452 (2004). 

2. Boundary Layer Analysis of Membraneless Electrochemical Cells, W. A. Braff, C. R. Buie and 

M. Z. Bazant, J. Electrochem. Soc. 160 (11) A2056-A2063 (2013). 

̅

̅



MIT OpenCourseWare
http://ocw.mit.edu

10.626 Electrochemical Energy Systems
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



