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To motivate looking into forced convection, we will quickly review concentration 
polarization.  Consider the system shown in Figure 1. 

 
Figure 1: Steady state concentration profile of diffusion through a porous stagnant media 

 

The current per area is given by: 

𝐼𝐼
𝐴𝐴

= −𝑛𝑛𝑛𝑛𝑛𝑛
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜕𝜕 = 0) 

At steady state the concentration profile is linear (as shown in Figure 1).  The 
current is therefore given by: 

𝐼𝐼
𝐴𝐴

=
𝑛𝑛𝑛𝑛𝑛𝑛(𝜕𝜕̅ − 𝜕𝜕𝑠𝑠)

𝐿𝐿
 

The limiting current occurs when 𝜕𝜕𝑠𝑠 = 0. 
𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙
𝐴𝐴

=
𝑛𝑛𝑛𝑛𝑛𝑛𝜕𝜕̅
𝐿𝐿
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Notes by MIT Student (and MZB)



The I-V curve, Figure 2, shows the effects of polarization.   

 
Figure 2: I-V curve showing the effect of polarization. 

 

In order to reduce the losses due to concentration polarization, the limiting current, 
Ilim, should be increased.  Two ways to increase the limiting current are to increase 𝜕𝜕̅ 
or to use forced convection.  Forced convection introduces a flow over the reacting 
surface.  This flow leads to a boundary layer which is critical to the concentration 
profile and therefore the reaction.  Figure 3 is a schematic of a boundary layer 
caused by flowing over a reacting surface. 

 
Figure 3: Boundary layer caused by flowing over a reacting surface 

The flux in the y-direction is given by the diffusion in the y-direction 

𝐹𝐹𝑦𝑦 = −𝑛𝑛
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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The length scale in the y-direction is δ(x) so the flux can be approximated as: 

𝐹𝐹𝑦𝑦~ − 𝑛𝑛
𝜕𝜕̅ − 𝜕𝜕𝑠𝑠
𝛿𝛿(𝜕𝜕)

 

Because 𝛿𝛿(𝜕𝜕) ≪ 𝐿𝐿, transport is typically faster in forced convection.  In order to 
model the concentration we will examine the 2-D steady state species conservation 
equation. 

𝑢𝑢𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

� 

Applying that there is only flow in the x-direction, 𝑢𝑢𝑦𝑦 = 0, and performing scaling 
analysis on the right hand side of the conservation equation: 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

~
𝜕𝜕
𝐿𝐿2

 ,
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

~
𝜕𝜕

𝛿𝛿(𝜕𝜕)2 

Applying 

𝛿𝛿(𝜕𝜕) ≪ 𝐿𝐿 

Therefore: 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

~
𝜕𝜕
𝐿𝐿2
≪

𝜕𝜕
𝛿𝛿(𝜕𝜕)2 ~

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

≪
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

 

This simplifies the conservation equation to: 

𝑢𝑢𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

 

 

We will now examine 2 flow profiles, the first is plug flow and the second is 
Poiseuille flow with the Leveque approximation. In plug flow the velocity profile is 
just given by a constant, 𝑢𝑢𝑥𝑥 = 𝑢𝑢0.  In Poiseuille flow, the velocity profile can be 
solved by solving the Navier-Stokes equation with a channel of height, H (shown in 
the appendix).   

𝑢𝑢𝑥𝑥 = 6𝑢𝑢�  �
𝜕𝜕
𝐻𝐻
− �

𝜕𝜕
𝐻𝐻
�
2
� 
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Applying the Leveque approximation using 𝜕𝜕~𝛿𝛿(𝜕𝜕) ≪ 𝐻𝐻, the quadratic term is 
negligible and therefore the velocity profile simplifies to: 

𝑢𝑢𝑥𝑥 =
6𝑢𝑢�
𝐻𝐻
𝜕𝜕 

 

First we will scale the conservation equation with each of these velocity profiles to 
learn how the boundary layers scale with x.  

 

Plug Flow 

𝑢𝑢0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

 

𝑢𝑢0
𝜕𝜕̅
𝜕𝜕

~𝑛𝑛
𝜕𝜕̅

𝛿𝛿(𝜕𝜕)2 

𝛿𝛿(𝜕𝜕)2~
𝑛𝑛𝜕𝜕
𝑢𝑢0

 

𝛿𝛿(𝜕𝜕)~�
𝑛𝑛𝜕𝜕
𝑢𝑢0

 

Poiseuille Flow with Leveque Approx. 

�
6𝑢𝑢�
𝐻𝐻
𝜕𝜕�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

 

�
𝑢𝑢�
𝐻𝐻
𝛿𝛿(𝜕𝜕)�

𝜕𝜕̅
𝜕𝜕

~𝑛𝑛
𝜕𝜕̅

𝛿𝛿(𝜕𝜕)2 

𝛿𝛿(𝜕𝜕)3~
𝐻𝐻𝑛𝑛𝜕𝜕
𝑢𝑢�

 

𝛿𝛿(𝜕𝜕)~�
𝐻𝐻𝑛𝑛𝜕𝜕
𝑢𝑢�

3

For the plug flow case, the boundary layer scales with the square root of x but using 
Poiseuille flow with the Leveque approximation the boundary layer scales with the 
cube root of x. 

The analytical solution can also be found for each of these cases.  There is not an 
intrinsic length scale for this PDE so a similarity variable should be used to solve 
each. 

 Plug Flow 

𝑢𝑢0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

 

𝜕𝜕(𝜕𝜕, 0) = 𝜕𝜕𝑠𝑠 = 0 

 𝜕𝜕(𝜕𝜕, 𝜕𝜕 → ∞) = 𝜕𝜕̅ 

𝜕𝜕(0,𝜕𝜕) = 𝜕𝜕̅ 

 

Poiseuille Flow with Leveque Approx. 

�
6𝑢𝑢�
𝐻𝐻
𝜕𝜕�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

  

𝜕𝜕(𝜕𝜕, 0) = 𝜕𝜕𝑠𝑠 = 0 

 𝜕𝜕(𝜕𝜕, 𝜕𝜕 → ∞) = 𝜕𝜕̅ 

𝜕𝜕(0,𝜕𝜕) = 𝜕𝜕̅ 
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The similarity variable that should be 
chosen is:  

𝜂𝜂 =
𝜕𝜕
2
�
𝑢𝑢0
𝑛𝑛 𝜕𝜕

 

Plugging this into the governing 
equation gives: 

0 =
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜂𝜂2

+ 2𝜂𝜂
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

 

𝜕𝜕(𝜂𝜂 = 0) = 0 

 𝜕𝜕(𝜂𝜂 → ∞) = 𝜕𝜕 ̅

See appendix for derivation 

The solution to this differential 
equation is an error function: 

𝜕𝜕 = 𝜕𝜕̅ erf�
𝜕𝜕
2
�
𝑢𝑢0
𝑛𝑛 𝜕𝜕

� 

Where  

erf(𝜕𝜕) = 2
√𝜋𝜋
∫ 𝑛𝑛−𝑠𝑠2𝑑𝑑𝑑𝑑𝑥𝑥
0

The similarity variable that should be 
chosen is: 

𝜂𝜂 = 𝜕𝜕�
2𝑢𝑢�

3𝐻𝐻𝑛𝑛𝜕𝜕
3

 

Plugging this into the governing 
equation gives: 

0 =
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜂𝜂2

+ 3 𝜂𝜂2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

 

𝜕𝜕(𝜂𝜂 = 0) = 0 

 𝜕𝜕(𝜂𝜂 → ∞) = 𝜕𝜕 ̅

See appendix for derivation 

The general solution to this 
differential equation is a regularized 
gamma function: 

𝜕𝜕 = 𝜕𝜕̅  P�
1
3

,
2𝑢𝑢�𝜕𝜕3

3𝐻𝐻𝑛𝑛𝜕𝜕
� 

Where  

 P(𝑎𝑎, 𝜕𝜕) =
∫ 𝑑𝑑𝑎𝑎−1 𝑛𝑛−𝑠𝑠 𝑑𝑑𝑑𝑑𝑥𝑥
0

∫ 𝑑𝑑𝑎𝑎−1 𝑛𝑛−𝑠𝑠 𝑑𝑑𝑑𝑑∞
0

Now that the concentration profiles have been found, an estimate of the boundary 
layer thickness can be found.  A good approximation for when the boundary layer 
ends is 𝑐𝑐

𝑐𝑐̅
= 0.99.  Applying the concentration ratio for the plug flow, the boundary 

layer comes out to: 

𝛿𝛿 = 3.643�
𝑛𝑛𝜕𝜕
𝑢𝑢0

 

For the Poiseuille Flow with Leveque approximation, the boundary layer comes out 
to: 

𝛿𝛿 = 1.607�
𝐻𝐻𝑛𝑛𝜕𝜕
𝑢𝑢�

3
 

5 
 



Any time there is flow over a reactive surface there is a balance between fuel 
utilization and power density. As the velocity increases, the power density increases 
because there is less of an effect of concentration polarization but more fuel is 
unused.  Conversely, when the velocity is small, the boundary layer is larger so 
more fuel is used but there is not as large a power density because concentration 
polarization diminishes the returns.  Figure 4 shows this effect. 

Figure 4: The figure on the right shows the boundary layer for two different 
velocities 𝑢𝑢2 > 𝑢𝑢1 and the figure on the left shows the corresponding I-V curve 

showing the effect of the velocity on the concentration polarization. 
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Appendix 

Derivation of Poiseuille flow 

𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝜕𝜕2

=
1
𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

 

𝑢𝑢𝑥𝑥(𝜕𝜕 = 0) = 0 

𝑢𝑢𝑥𝑥(𝜕𝜕 = 𝐻𝐻) = 0 

Where P is the pressure and μ is the viscosity and the boundary conditions come 
from no slip on the surface. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 will be constant so the solution to the differential equation is: 

𝑢𝑢𝑥𝑥 =
1

2𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

 𝜕𝜕2 + 𝐴𝐴𝜕𝜕 + 𝐵𝐵 

Applying 𝑢𝑢𝑥𝑥(𝜕𝜕 = 0) = 0, B = 0.   

Applying  𝑢𝑢𝑥𝑥(𝜕𝜕 = 𝐻𝐻) = 0 

𝐴𝐴 = −
𝐻𝐻
2𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

 

𝑢𝑢𝑥𝑥 =
1

2𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

 𝜕𝜕2 −
𝐻𝐻
2𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

𝜕𝜕 

The average velocity is given by: 

𝑢𝑢� =
1
𝐻𝐻
� 𝑢𝑢𝑥𝑥 𝑑𝑑𝜕𝜕
𝐻𝐻

0
 

𝑢𝑢� =
1
𝐻𝐻
� �

1
2𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

 𝜕𝜕2 −
𝐻𝐻
2𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

𝜕𝜕�𝑑𝑑𝜕𝜕
𝐻𝐻

0
 

𝑢𝑢� =
1
𝐻𝐻
�

1
6𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

 𝐻𝐻3 −
𝐻𝐻
4𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

𝐻𝐻2� 

𝑢𝑢� = −
1

12 𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

 𝐻𝐻2 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

= −
12 𝜇𝜇 
𝐻𝐻2 𝑢𝑢�   

The velocity is therefore 
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𝑢𝑢𝑥𝑥 = 6𝑢𝑢�  �
𝜕𝜕
𝐻𝐻
− �

𝜕𝜕
𝐻𝐻
�
2
� 

 

Derivation of 𝜂𝜂 and the governing concentration profile for plug flow: 

𝑢𝑢0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

 

Assume a similarity variable exists in the form: 

𝜂𝜂 =
𝜕𝜕

𝑔𝑔(𝜕𝜕)
 

Plugging this into the differential equation: 

𝑢𝑢0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜂𝜂2

�
𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕
�
2

 

𝑢𝑢0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

�−
𝜕𝜕

𝑔𝑔(𝜕𝜕)
𝑔𝑔′(𝜕𝜕)
𝑔𝑔(𝜕𝜕)� = 𝑛𝑛

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜂𝜂2

�
1

𝑔𝑔(𝜕𝜕)�
2

 

0 =
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜂𝜂2

+ �
𝑢𝑢0
𝑛𝑛
�𝑔𝑔(𝜕𝜕)𝑔𝑔′(𝜕𝜕)𝜂𝜂

𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

 

For the similarity variable to exist neither x nor y can appear in the governing 
equation so �𝑢𝑢0

𝐷𝐷
�𝑔𝑔(𝜕𝜕)𝑔𝑔′(𝜕𝜕) must be equal to a constant.  To simplify the math later 

this value can be set to 2.   

�
𝑢𝑢0
𝑛𝑛
�𝑔𝑔(𝜕𝜕)𝑔𝑔′(𝜕𝜕) = 2 

𝑔𝑔(𝜕𝜕)𝑔𝑔′(𝜕𝜕) = 2
𝑛𝑛
𝑢𝑢0

 

𝑔𝑔(𝜕𝜕)2

2
= 2

𝑛𝑛
𝑢𝑢0
𝜕𝜕 

𝑔𝑔(𝜕𝜕) = 2�
𝑛𝑛
𝑢𝑢0
𝜕𝜕 

Therefore: 

𝜂𝜂 =
𝜕𝜕
2
�
𝑢𝑢0
𝑛𝑛 𝜕𝜕
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0 =
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜂𝜂2

+ 2 𝜂𝜂
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

 

 

Derivation of 𝜂𝜂 and the governing concentration profile for Poiseuille flow with the 
Leveque approximation: 

6𝑢𝑢�
𝐻𝐻
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

 

Assume a similarity variable exists in the form: 

𝜂𝜂 =
𝜕𝜕

𝑔𝑔(𝜕𝜕)
 

Plugging this into the differential equation: 

6𝑢𝑢�
𝐻𝐻
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜂𝜂2

�
𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕
�
2

 

6𝑢𝑢�
𝐻𝐻
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

�−�
𝜕𝜕

𝑔𝑔(𝜕𝜕)�
2
𝑔𝑔′(𝜕𝜕)� = 𝑛𝑛

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜂𝜂2

�
1

𝑔𝑔(𝜕𝜕)�
2

 

0 =
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜂𝜂2

+ �
6𝑢𝑢�
𝐻𝐻𝑛𝑛

�𝑔𝑔(𝜕𝜕)2 𝑔𝑔′(𝜕𝜕)𝜂𝜂2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂

 

For the similarity variable to exist neither x nor y can appear in the governing 
equation so �6𝑢𝑢�

𝐻𝐻𝐷𝐷
�𝑔𝑔(𝜕𝜕)2 𝑔𝑔′(𝜕𝜕) must be equal to a constant.  To simplify the math later 

this value can be set to 3.   

�
6𝑢𝑢�
𝐻𝐻𝑛𝑛

�𝑔𝑔(𝜕𝜕)2 𝑔𝑔′(𝜕𝜕) = 3 

𝑔𝑔(𝜕𝜕)2𝑔𝑔′(𝜕𝜕) =
𝐻𝐻𝑛𝑛
2𝑢𝑢�

 

𝑔𝑔(𝜕𝜕)3

3
=
𝐻𝐻𝑛𝑛
2𝑢𝑢�

𝜕𝜕 

𝑔𝑔(𝜕𝜕) = �3𝐻𝐻𝑛𝑛
2𝑢𝑢�

𝜕𝜕
3

 

Therefore: 

𝜂𝜂 = 𝜕𝜕�
2𝑢𝑢�

3𝐻𝐻𝑛𝑛𝜕𝜕
3
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0 =
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜂𝜂2

+ 3 𝜂𝜂2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜂𝜂
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