10.569 Synthesis of Polymers
Prof. Paula Hammond
Lecture 25: “Living” Cationic Polymerizations, Examples of Cationic
Polymerization, Isobutyl Rubber Synthesis, Polyvinyl Ethers

Cationic Polymerization

Some differences between cationic and anionic polymerization
o Rates are faster for cationic
(1 or more orders of magnitude faster than anionic or free radical)

I
« T C® is very reactive, difficult to control and stabilize

— more transfer occurs
— more side reactions
— more difficult to form “living” systems
— hard to make polymers with low PDI or block copolymers

¢ Living cationic only possible for a specific subset of monomers

¢ Most industrial cationic processes are not living
- recent developments are improving this

Kinetic Steps for Cationic Polymerization

Initiation: Use Acids

e Protonic Acids (Bronsted): HA

strong, but without nucleophilic counterion
HCl10,4, CF3SO3H, H,S0,4, CFCOOH
—> C|O4_

comes off

want to avoid
recombination
through counterion
® 6
0 4 H2c=(|3H 5 H3C—(|3H A

R R

e Lewis Acids
Often as initiator/coordination complexes
helps stabilize counterions and prevent
recombination

BF3 + Hzo <> [H+BF3-OH]
AICI; + RCl & [R*AICI, ] Equilibrium between
SbFs + HF < [H"SbFs] anion-cation pair
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Carbenium salts with aromatic stabilization

Propagation

H o H H
® A | Hy | @eA
R vinyl monomer R R

initiation species
Note: rearrangements can occur, especially if a more stable carbocattion can be
formed (e.qg. tertiary carbocation)
(most common for 1-alkenes, o olefins)

e.g. 2 methyl butene H,C=CH

CH
-
H,C “CH,
lil CH
NaVaVo\ C C@ Hy, | @3
| -« YYWNC— c’—c
ch C—H H, I
| CH,
CH,
secondary carbocation tertiary carbocation

This occurs via intramolecular hydride (H") shifts
Usually slow: If R, < rearrangement rate will get rearranged product

ccc;—

If R, = rearrangement rate, will get random copolymer

H, H
ot D Ly

CH3 3C CH3
As TT, mT (less rearrangement)
Rate of rearrangement does not increase as fast as rate of propagation.

Hydride shift NOT common for conjugated monomers like: styrene, vinyl ethers and
isobutylene and other tertiary carbocations.
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Termination and Transfer (Several Possibilities)

A) Termination with counterion: kills propagating cation, kinetic chain (ky)
i) Combination
H

|

~—~__CH—C® + CFsc00®
|
R

H o)
Il

I
/\_/CHZ_CI:_O_C_CF3
R

kt,comb

ii) Anion Splitting

H
I e K |
/\/CHZ—(I:(B + BFOH —%° 5 /\/CHz—IC—OH + BF3

R R

H

B) Transfer or termination to impurity or solvent
o]

To H,0, ROR, NRs, —{—R » etc.

Initiator
k ®@_06
HMMUZS + XA —TS5m HMWMA + X(12)
Impurity
or Solvent
e.g.
more stable than H
{ £°)
H H R |
I A | lee R
+ ROR > /\_/CHZ—C—O A

CH,—C®
T2 | é F|{ L
R not as reactive,

acts as retardant
- will not propagate further

or

H H
CH c':@eA + R-OH CHz é OR + HA®
o - —_— —C—
R R weak acid

will not initiate

All these processes
kill chain length.
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Transfer (Kinetic Chain Maintained)
A) Proton transfer to monomer

) L0 et
® O
/\_/—CIIJCII(D A + H2C=(i:H /\_/-C=Cl: + HgC (I:A
|1| Flz R R R
propagates
B) Hydride ion transfer from monomer
H H
c®,©

/\/(:HZ_C@ @A + H2C__C » /\/ 2 | I |2 | |2C—

I
Flz Fle R R ‘\

propagates
. . kr M .
In general, chain transfer to monomer is favorable so Cy — k can be sizeable.
p
C) Proton transfer to counterion
(“spontaneous termination™)
i _ ®,0
~—~__CH>—C®0OA ey, AN CHCT + HEA

| |
CHs CH, K

(‘ usually goes on
. to initiate again
propagating

continues (
protic acid initiators
are possible
+Lewis acids are

less likely
Usually propagates
(does NOT Kkill chain)
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Kinetic Expressions

Inititation: Assume Lewis Acid Pair
) [Y*(lz)’J
[1]zY]

k.
2. \F%IZ)e + M — Yl\ﬁa(lzga often rate limiting

I + ZY - \%z)@

1. K

If step 2 is rate determining, then
R =k Y (12) |[M]
= KK[1T2YTM]

*R; could be determined based on step 1. Then the expressions would be different.

Propagation

k ®,, O
YM?%IZSa + M —2  YM1(12) Assumption: chain length has
) little effect on reactivity
some number Let [M*] = total concentration of
of monomer A/ [M']

all-size propagating carbocations
R, =K, [YMJ.+ (IZ)fJ[sz K, [M*][M] (ion pairs + free ions)

Termination

Must determine primary means of termination (solvent, impurities, counterion
combinations, or all?)

Example case: termination by counterion combination

® 0o kt,comb
YMOZ)" == MIZ o R Z K [YM(1Z) ] = Koo [M]

If we assume steady state [M"]
R =k [M']=kK[M]I1zY]=R  Steady state assumption is that R, = R;
[M*] _R_ kK[M]1]zY]
K, K,

. _ R
Going back to R, with [M*J = k—'
t

o _ Rk, [M]_Kkk 1z IMT ~—_
p 7‘ kt - kt

second order in [M]

First order in R;
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(unlike free radical)

Py : No transfer (to monomer, solvent, counterion)
P = & _ kp [M]
k

" R "

Py : If transfer occurs

Ry m: to monomer — create new propagating chain
R s: to solvent — create new cationic species
R .ci: to counterion — recreate initiation

Rtr,Ci = ktr,Ci |:M+:|
with R, = ktr,M |:M+:||:M:|
Rtr,S = ktr,S |:M+:||is:|

— R
P, = P
Rt + Rtr,Ci + Rtr,M + Rtr,S

P_ _ kp [M]
" kt + ktr,Ci + ktr,M |:M:|+ ktr,S |:S:|
1 K, K ci |:S:|
== + ——+C, +C, ==
Py Ko[M] kp[MJ/A " oa V]
kp kp

Suppose transfer to solvent or impurity does not result in further propagation.

e.g. NR; =
o o R az)°
HMWM(1Z)° + NRy —» HM\M—\&R
Is stable
R No further propagation

This must be included in
steady state [M*] expression
o Kkik,[IT2YIMP

b term from transfer like
kt ktr,S[S

*does not effect m expression (do not include in m calc)
*Note: all of the above assumes the 2" initiation step is rate determining.

Validity of Steady State Assumption

Not really valid
- rxn rates very rapid (seconds — minutes)
- often R; > R
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- [M*] slowly increases with time
- [M*] reaches maximum late in polymerization
then decreases with further conversion

Application of equations is merely an approximation of what really happens.
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