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Supplementary Notes for 

Chapter 14 Energy and Power Production, 

Conversion, and Efficiency 

1. Fundamental principles 
-energy conservation and the 1 st Law of thermodynamics 

-entropy production and the 2nd Law of thermodynamics 
-reversible Carnot heat engines 
-maximum work I availability I exergy concepts 

2. Efficiencies 
-mechanical device efficiency for turbines and pumps 
-heat exchange efficiency 
-Carnot efficiency .. 

-cycle efficiency 
-fuel efficiency 
-utilization efficiency 

" 
3. Ideal cycles 

-CarnQt with fixed T Hand T c 
-Carnot with variable T H and fixed T c 
-Ideal Brayton with variable T Hand T c 

4. Practical power cycles 
-an approach to Carnotizing cycles 
-Rankine cycles with condensing steam or organic working fluids 

-sub and supercritical operation 
-feed water heating 
-with reheat 

-Brayton non-condensing gas turbine cycles 
-Combined gas turbine and steam Rankine cycles 
-Topping and bottoming and dual cycles 
-Otto and diesel cycles for internal combustion engines 

5. Examples of power conversion using a natural gas or methane energy source 
-sub-critical Rankine cycle 
-gas turbine open Brayton cycle 
-combined gas turbine steam Rankine cycle 
-electrochemical fuel cell 
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For further information, refer to: 

1. Milora, S.L. and Tester, J. W. Geothermal Energy as a Source of Electric 
Power. Cambridge, MA: MIT Press, 1976, especially chapters 3-5. 

2. Balje, C.E. Turbomachines. New York: John Wiley and Sons, 1981. , 
3. Balje, C.E. Journal of Engineering for Power, AS ME Transactions 84(1), 83, 

January 1962. 

Power Cycles 

1. Rankine Cycle Limitations 

-utilization vs. cycle efficiency (11u vs. 11c) 

-"Carnotizing" to approach 2nd law limit of performance 

t , 11 -mechanical component efficiencies 11 ~ < 1 for turbines and feed pumps 
(effect of moisture to decrease efficiency) 

-heat transfer irreversibilities (AT> 0 in primary heat exchanger and 
condenser) 

-materials limitations (metallurgical limit for steel in steam Rankine cycle 
600°C (1100°F) 

2. Improvement to Rankine Cycle (fossil or nuclear-fired) 

-reheat 

-supercritical vs. subcritical operation with steam 

-decrease turbine exhaust pressure/condensing temperature 
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-regenerative feed water heating/interstage moisture extraction 

-topping and bottoming cycles using non-aqueous fluids 
(topping -Hg, Cs, K; bottoming -NH3, halocarbons) 

-combined cycles (gas turbine cycle linked to steam cycle) 

3. Power Generation with Low Temperature Heat So~es (solar, geothennal, etc.) 

-cycle configurations possible 

-analysis of single and multi-single flash systems 

-single (binary), sub- and supercritical cycles using non-aqueous working fluids 

-derived thermodynamic property estimation from BOS, P/iquid, p:;~ and C; 
correlations 

-effect cycle pressure on performance with an R-115 and a 150°C resource 

-irreversibility analysis of performance as function of turbine inlet pressure 

-11u vs. temperature for several fluids 

-correlation of "degree of superheat" for optimal performance vs. C;lR 

4. Thennodynamic Anaiysu of Fluid Flow in a Duct or Nozzle 

-thermodynamic analysis of fluid flow in a duct or nozzle 

-conversion of KE into rotating shaft work 

-sonic limitations in choked flow (pressure ratio, isentropic AH) 

5. Turbine, Pump and Compressor Sizing and Perfonnance 

-Balje analysis of performance (11 = ffNs' Ds, Re, Mal) 

-generalized approach to turbine exhaust and requirements 

-sizing figure of merit 
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Power Cycle Terminology 

I ffi .net work W net 
11 C = cyC e e Clency = primary heat exchanged = - QH 

net work Wnet Wnet
11U ==-=­maximum possible work W max A B 

AB = availability change = ill -T oAS = W max 

To = ultimate sink temperature for heat rejection 

Po = ambient pressure 

For emmpie, for geothermal .systems, at steady state 

I Tgf'P gf 
AB = AH-ToAS 

To'P 0 

where T gf = geothermal fluid inlet temperature 
P gf = geothermal fluid inlet pressure 

As the cost of producing the geothermal fluid (drilling wells, etc.) increases relative to 
the cost of the power conversion equipment itself (heat exchangers, turbines, pumps, 
etc.), cycle operation at conditions approaching max 11u is favored. See Chapters 3 and 4 
of Milora and Tester (1976) for further discussion. 
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Figure 1. General Rankine cycle schematic.

"

c

200

R-717(NH3)

15

-
~IOO

(.)

*1...

50

0
0 5 10 15 20

*Y
Cp/R=

Y-I

Figure 8. Generalized correlation for the degree of superheat above the
critical temperature for optimum utilization of geothermal fluid
availability as a function of ideal gas state reduced heat capacity.
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Figure 2. Availability or maximum useful work as a function of geothermal
fluid temperature.
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Figure 8. Generalized correlation for the degree of superheat above the
critical temperature for optimum utilization of geothermal fluid
availability as a function of ideal gas state reduced heat capacity.
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Figure 3. Supercritical Rankine cycle operating state points on a temperature-
enthalpy (T-H) diagram.
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Figure 8. Generalized correlation for the degree of superheat above the
critical temperature for optimum utilization of geothermal fluid
availability as a function of ideal gas state reduced heat capacity.
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Figure 4. Temperature-entropy (T -S) plot for an idealized or "Carnotized"
power cycle. Note that as AT 1 and AT 2 go to zero that maximum
work output is achieved.
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Figure 8. Generalized correlation for the degree of superheat above the
critical temperature for optimum utilization of geothermal fluid
availability as a function of ideal gas state reduced heat capacity.
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Figure 5 Approach to thermodynamically optimized Rankine cycle for R-115
with a 150°C liquid geothermal fluid source and heat rejection at
26.7°C (80°F). Temperature-enthalpy (T -H) diagrams shown at
different reduced cycle pressures.
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Figure 8. Generalized correlation for the degree of superheat above the
critical temperature for optimum utilization of geothermal fluid
availability as a function of ideal gas state reduced heat capacity.
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Figure 8. Generalized correlation for the degree of superheat above the
critical temperature for optimum utilization of geothermal fluid
availability as a function of ideal gas state reduced heat capacity.
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Figure 8. Generalized correlation for the degree of superheat above the
critical temperature for optimum utilization of geothermal fluid
availability as a function of ideal gas state reduced heat capacity.
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Figure 8. Generalized correlation for the degree of superheat above the
critical temperature for optimum utilization of geothermal fluid
availability as a function of ideal gas state reduced heat capacity.
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