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(In preparation for Lectures 23 and 24, also read T&M, 10.1.5-10.1.7).
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• Degrees of freedom
• Computation of the thermodynamic properties of a monatomic ideal gas
• Computation of the thermodynamic properties of polyatomic ideal gases, in-
cluding diatomic ideal gases

• Summary of thermodynamic functions

23.1 Degrees of freedom

We have discussed translational, electronic, and nuclear degrees of freedom. Di-
atomic and polyatomic molecules have two additional internal degrees of freedom,
vibrational and rotational degrees of freedom.
Excluding electronic and nuclear degrees of freedom, atoms and molecules have

a total of 3Natoms degrees of freedom, where Natoms is the number of atoms in a
molecule (or atom). Linear molecules have 2 rotational degrees of freedom and
non-linear molecules have 3 rotational degrees of freedom. The rest of the degrees
of freedom, 3Natoms-5 for linear molecules and 3Natoms-6 for non-linear molecules
are considered to be vibrational degrees of freedom. From now on, we approximate
these vibrational degrees of freedom as normal modes, i.e. modes of simple harmonic
oscillators. We will also ignore nuclear degrees of freedom from now on.

23.2 Computation of the thermodynamic properties of a monatomic
ideal gas

We have N independent and indistinguishable particles. Let’s label these particles,
a, b, .... Particle a can take on energy levels εaj , where as before, j is just an index
referening each of the possible states. Particle b can take on energy levels εbj , etc.
Designate the partition function of each particle with the symbol q. Thus,

qa =
X
j

e−βεaj ,

qb =
X
j

e−βεbj ,

etc.
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Then, the energy for the entire system, will be

Ei,j,... = εai + εbj + .... (1)

Thus, Q should be of the form X
i,j,...

e−βEi,j,... = qN ,

where q is the partition function for an individual particle.
However, since each particle is indistinguishable, the ε’s in equation 1 can be

permuted in N ! ways. Thus, in order to avoid overweighting each quantum state,
we much divide qN by 1

N ! . This leads to

Q = 1
N!q

N .

Now, we need to compute q for a single atom. We know that from quantum
mechanics, the energy levels of a particle due to their translational degrees of freedom
are

εj = εlxlylz =
h2(l2x + l2y + l2z)

8mV 2/3
,

where h is Planck’s constant, equal to 6.626×10−34 J s; lx, ly, lz = 1, 2, 3, ...; m is the
mass of the particle; and V is the volume occupied by the particle. The numbers
lx, ly, lz are the quantum numbers designating the translational quantum level. Let

R2 = l2x + l2y + l2z =
8mV 2/3ε

h2 . Then, the number of states with energy < ε is

Φ(ε) =
πR3

6
=

π

6

µ
8mε

h2

¶3/2
V .

This result can be visualized by thinking of the quantum energy levels as points on
a 3D Cartisian grid in an octet of a sphere.
Let us remind ourselves of the difference between the designation of states and

energy levels, as shown in Figure 1. Thus,

q =
X

states j

e−βεj =
X

levels i

ωie
−βεi ,

where ωi is the degeneracy of level i. (The degeneracy is the number of states with
energy εi.)
Write

q =
∞X
lx

∞X
ly

∞X
lz

e−βεlxlylz .

For states with energies that are very close together, we can replace
P
’s with

R
’s.

How close do they need to be? How close are they? Thus,

q =

Z ∞
0

ω(ε)e−βεdε,

where the number of states between ε and ε+ dε are

ω(ε)dε =
dΦ

dε
dε

=
π

4

µ
8m

h2

¶3/2
V ε1/2dε.
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Figure 1: Difference between states and energy levels.

Plugging this into the integral yields

q =
π

4

µ
8m

h2

¶3/2
V

Z ∞
0

ε1/2e−βεdε

=

µ
2πmkT

h2

¶3/2
V .

Thus,

q = V
Λ3 ,

where Λ ≡
³

h2

2πmkT

´1/2
and is called the thermal deBroglie wavelength. It gives

the characteristic wavelength of a gas. Note that this q will be designated as qt
below for "translational" (see below).
From all of this, we can determine the partition function of the system,

Q =
1

N !
qN =

1

N !

µ
V

Λ3

¶N
.

Now, recalling the formulas for the thermodynamic quantities in terms of Q yields

A = −kT lnQ
= −kT (−N lnN +N +N ln q)

= −NkT ln

"µ
2πmkT

h2

¶3/2
V

N
e

#

or in intensive form,

A = −kT ln
"µ
2πmkT

h2

¶3/2
V e

#
,
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and

P = kT

µ
∂ lnQ

∂V

¶
T,N

= NkT

µ
∂ ln q

∂V

¶
T,N

=
NkT

V
,

and

U = kT 2
µ
∂ lnQ

∂T

¶
V ,N

= NkT 2
d lnT 3/2

dT

=
3

2
NkT,

and,

Cv =

µ
∂U

∂T

¶
V ,N

=
3

2
Nk.

Recalling an expression for S,

S =
U −A

T

= Nk ln

"µ
2πmkT

h2

¶3/2
V

N
e5/2

#
.

Also, H= U + PV = U +NkT and G= A+ PV = A+NkT.
Next, we may need to consider internal degrees of freedom of the atom, such as

electronic and nuclear degrees of freedom. Thus, we can write the partition function
as

Q =
1

N !
(qtqeqn)

N ,

where qt is the translational partition function, qe is the electronic partition func-
tion, and qn is the nuclear partition function. For most systems, the first excited
electronic state and nuclear state are at ≈ 20 kcalmol−1 and 20,000 kcalmol−1

respectively. Thus, they do not play a significant role at temperatures of interest.
Note that there are important exceptions to this rule of thumb, such as with the
alkai metal atoms and halogens, but we will not concern ourselves with these in this
course.
We often need to take into account degenerate electronic states of atoms that

are a result of their spins. For example, H has a net spin of 12 , meaning that it has
two spin degrees of freedom at the ground state energy level, ωe = 2 and qe = 2.
Thus an additional factor of Nk lnωe must be added to the formula for the entropy
given above, and an additional factor of NkT lnωe must be added to the formula
for the Helmholtz free energy given above.
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23.3 Computation of the thermodynamic properties of poly-

atomic ideal gases, including diatomic ideal gases

Recall that
Q =

1

N !
qN .

First, we assume that all of the degrees of freedom are separable. Thus,

q(V , T ) = qt(V , T )qr(T )qv(T )qe(T ).

where qt is the translational partition function, qr is the rotational partition func-
tion, qv is the vibrational partition function, and qe is the electronic partition func-
tion. We discussed qt and qe last time. We note here that if we choose the electronic
energy of separated atoms as the electronic reference state, then we can define De

as the dissociation energy, the energy needed to atomize the molecule.
Now, we need to compute qr and qv.

23.3.1 Vibrational degrees of freedom

From quantum mechanics, the energy levels of a harmonic oscillator are:

εn = (n+
1

2
)hν, (2)

n = 0, 1, 2, ...,

where h is Planck’s constant and ν is the frequency. The vibrational partition
function is then

qv =
e−Θv/2T

1− e−Θv/T
,

where Θv = hν/k. (You can verify this yourself.)
Then,

Av = −NkT ln qv

= NkT

·
Θv
2T

+ ln
³
1− e−Θv/T

´¸
,

Uv = NkT 2
µ
∂ ln qv
∂T

¶
= Nk

µ
Θv
2
+

Θv
eΘv/T − 1

¶
,

CV v =

µ
∂U

∂T

¶
V,N

= Nk

µ
Θv
T

¶2
eΘv/T¡

eΘv/T − 1¢2 ,
and,

Sv =
Uv −Av

T

= Nk/T

µ
Θv

eΘv/T − 1
¶
−Nk ln

³
1− e−Θv/T

´
.
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We also emphasize that the terms Θv2 in the expressions for Uv and Av above are a
result of the fact that the ground state of the harmonic oscillator has a finite energy
level as seen in equation 2. The term 1

2hν =
¡
kΘv
2

¢
is called the zero point energy

of the vibration.
We note that for a diatomic molecule, for example, the measured bond dissoci-

ation energy, D0, is not the energy of atomization described at the beginning of the
lecture. This is because the zero point energy adds a destabilizing contribution.
Thus,

D0 = De − 1
2
hν.

This can be easily generalized for polyatomic molecules.

23.4 Rotational degrees of freedom

From quantum mechanics, the energy levels of a rigid, linear rotator are

εj =
j(j + 1)h2

8π2I
,

j = 0, 1, 2, ...,

where I is the moment of inertia. Note that for a diatomic molecule consisting of
atoms 1 and 2, I = µd2, where µ is the reduced mass

³
µ = m1m2

m1+m2

´
and d is the

bond length. This can be generalized for polyatomic molecules. (See books on
classical mechanics.)
For diatomic and non-linear polyatomic molecules, the rotational partition func-

tion is then

qr =
∞X
j=0

ωje
−βεj

=
∞X
j=0

(2j + 1)e−j(j+1)Θr/T ,

where

Θr =
h2

8π2Ik

At high T ,

qr →
Z ∞
o

(2j + 1)e−j(j+1)Θr/Tdj

=
T

Θr
=
8π2IkT

h2
.

Note that in order to eliminate double counting, symmetry must be taken into
account. The symmetry number is symbolized as σ, and for a diatomic molecule,
σ = 1 if the molecule is unsymmetrical and σ = 2 if the molecule is symmetrical.
A non-linear polyatomic molecule will have 3 rotational degrees of freedom, and

obviously the 3 different moments of inertia will almost always be different. For
these species,

qr =
π1/2

σ

µ
8π2IAkT

h2

¶1/2µ
8π2IBkT

h2

¶1/2µ
8π2ICkT

h2

¶1/2
,
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where σ is again the symmetry factor, which can take on many values, up to 12, and
IA, IB, IC are the three principle moments of intertia. (We ignore the derivation
here, because it is somewhat complicated. It can be found in a book on classical
mechanics.)
This equation can be written more compactly as

qr =
π1/2

σ

µ
T 3

ΘAΘBΘC

¶1/2
.

From this equation, we can derive the thermodynamic functions:

Ar = −NkT ln

"
π1/2

σ

µ
T 3

ΘAΘBΘC

¶1/2#
,

Er =
3

2
NkT,

CV r =
3

2
Nk,

Sr = Nk ln

"
π1/2

σ

µ
T 3e3

ΘAΘBΘC

¶1/2#
.

23.5 Summary of thermodynamic functions

Below is a summary of the thermodynamic functions, excluding nuclear and excited
electonic degrees of freedom.

23.5.1 Monatomic ideal gas

A = −NkT ln

"µ
2πmkT

h2

¶3/2
V

N
e

#
;

U =
3

2
NkT ;

CV =
3

2
Nk;

S = Nk ln

"µ
2πmkT

h2

¶3/2
V

N
e5/2

#
.

Also, H = U + PV = U +NkT and G= A+ PV = A+NkT.

23.5.2 Diatomic and linear polyatomic ideal gas

− A

kT
= ln

"µ
2πmkT

h2

¶3/2
V

N
e

#
+ln

·
8π2IkT

σh2

¸
−
3Na t om s−5X

i=1

·
Θi,v
2T

+ ln
³
1− e−Θi,v/T

´¸
+
De

kT
+lnωe;

U

kT
=
3

2
+
2

2
+

3Na t om s−5X
i=1

·
Θi,v
2T

+
Θi,v/T

eΘi,v/T − 1
¸
− De

kT
;

CV

k
=
3

2
+
2

2
+

3Na t om s−5X
i=1

"µ
Θi,v
T

¶2
eΘi,v/T¡

eΘi,v/T − 1¢2
#
;

7



10.40: Fall 2003 Lectures 23 and 24 8

S

k
= ln

"µ
2πmkT

h2

¶3/2
V

N
e5/2

#
+ln

·
8π2IkTe

σh2

¸
+

3Na t om s−5X
i=1

·
Θi,v/T

eΘi,v/T − 1 − ln
³
1− e−Θi,v/T

´¸
+lnωe.

Note that m is the mass of the molecule. Also, H = U + PV = U + kT and
G = A+ PV = A+NkT.

23.5.3 Non-linear polyatomic ideal gas

− A

kT
= ln

"µ
2πmkT

h2

¶3/2
V

N
e

#
+ln

"
π1/2

σ

µ
T 3

ΘAΘBΘC

¶1/2#
−
3Na t om s−6X

i=1

·
Θi,v
2T

+ ln
³
1− e−Θi,v/T

´¸
+
De

kT
+lnωe;

U

kT
=
3

2
+
3

2
+

3Na t om s−6X
i=1

·
Θi,v
2T

+
Θi,v/T

eΘi,v/T − 1
¸
− De

kT
;

CV

k
=
3

2
+
3

2
+

3Na t om s−6X
i=1

"µ
Θi,v
T

¶2
eΘi,v/T¡

eΘi,v/T − 1¢2
#
;

S

k
= ln

"µ
2πmkT

h2

¶3/2
V

N
e5/2

#
+ln

"
π1/2e3/2

σ

µ
T 3

ΘAΘBΘC

¶1/2#
+

3Na t om s−6X
i=1

·
Θi,v/T

eΘi,v/T − 1 − ln
³
1− e−Θi,v/T

´¸
+lnωe.

Note that m is the mass of the molecule. Also, H = U + PV = U + kT and
G = A+ PV = A+NkT.
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