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(In preparation for Lecture 21, also read T&M, beginning of Ch. 10 through
10.1.3).

Now, we turn to the microscopic: atoms and molecules. Why do we need to
use the theory of atoms and molecules and how do we know that they really exist?

(Think about these issues for class discussion.)

Concurrent with the development of the atomic theory is the concept of statisti-
cal averaging. Thermodynamic properties, here known as macroscopic properties,
such as T,P,U, etc. are the result of averaging the properties of many different
atoms and molecules. This is useful, because the important property, the micro-
scopic property, of each atom or molecule is its energy. Averaging the energies of
a large number of atoms and/or molecules in the proper way will yield the macro-
scopic properties of the system. Thus, the need to average introduces the need for
statistics and for probability.

21.1 Objectives of 10.40 Part II

The objectives of this part of the course is to give you an appreciation of the tools
of statistical thermodynamics and statistical mechanics and how they can be used
(1) to compute thermodynamic quantitaties for specific systems and (2) to
better understand thermodynamic quantitites in general. It is not expected
that you will have a full understanding of statistical thermodynamics and statistical
mechanics. You should, however, be able to solve simple problems and understand
enough to know how to increase your understanding, if so needed for your research.

21.2 Quantummechanics yields the energy levels of a system

The main equation of quantum mechanics, the Schrödinger equation, gives the
possible energy levels of a system:

H|ψνi = Eν |ψνi,
where ν = 0, 1, ....ψν is the state of the system and Eν is the energy of state ν. ψ0
is the ground state of the system, ψ1 is the first excited state, etc. An example can
be seen in Figure 1.
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Figure 1: Example of different energy levels coming from the solution to
Schrödinger’s equation. Note that it does not matter if we write E in intenstive or
extensive form. Only the units will change, e.g. kJ versus kJ/mol.

The thermal energy is in units of kT (k is Boltzmann’s constant = 1.381021×
10−23 J K−1; R = kNA), where 1 kcal mol−1= 505 K = 351 cm−1.
If one were to solve Schrödinger’s equation, for example, for you in 66-110, and

treating you as a particle in a box, if you weigh 60 kg, then for you, E1 − E0 ≈
1× 10−50 kJ mol−1.
Note that quantum mechanics does not in itself tell which energy levels are

occupied and the degree of occupancy. Those are in the realm of statistical me-
chanics. In this sense, the solutions to the Schrödinger equation are only the
possible energy levels.
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21.3 Probabilities and averaging

An observable property, Bobs, is some mechanical, measured property, that is an
average over many measurements of short time:

Bobs =
1

Nm

NmX
j=1

Bj ,

where Nm is the number of measurements.

Examples of mechanical properties: V, P,N,E,M (M is the magetization.)
Examples of non-mechanical properties: T, S,A, µ

If pj is the probability that the system is in state j, then

Bobs =
X
j

pjBj = hBi,

where < B > is called the ensemble average, and an ensemble is a collection of
microstates (see below). Also note, thatX

j

pj = 1.

In systems at equilibrium, it turns out, as we shall show later,

pj =
e−βEj

Q
,

where Ej is the energy of state j, β = 1/kT, and

Q =
X
j

e−βEj ,

where Q is the partition function. It is merely the normalization factor, so thatP
j pj = 1.

e−βEj is called the Boltzmann factor.

21.4 Example of application of the Boltzmann factor

Let us analyze a two-state system, where E1 −E0 = 1.0 kcal mol−1. At any given
time, what is the probability to find the system in the ground state at 300 K and
at 1000 K.
At 300 K, kT = 0.6 kcal mol−1, and at 1000 K, kT = 2.0 kcal mol−1.
At 300 K,

p0 =
e−E0/0.6

e−E1/0.6 + e−E0/0.6
=

e−E0/0.6

e−E0/0.6e−(E1−E0)/0.6 + e−E0/0.6
=

1

e−(E1−E0)/0.6 + 1
= 0.84.
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Similarly, at 1000 K,

p0 =
1

e−(E1−E0)/2.0 + 1
= 0.62.

lim
T→∞

p0 =?

lim
T→0

p0 =?
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