10.40 Appendix
Connection to Thermodynamics and Derivation of
Boltzmann Distribution
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Ensembles continued: Canonical, Microcanonical, Grand Canonical, etc.

Connection to thermodynamics

Relation of thermodynamic quantities to Q

0.1 Canonical ensemble

In the Canonical ensemble, each system has constant N,V and T.

After equilibration, remove all of the systems from the bath, and put them all
together:

Apply postulate 2 to the ensemble of systems, also called a supersystem.

Let n; = number of systems with energy E;. Also, N/ :Zj n; and Hiyy =
Zj njEj .

If we know all E;’s, then the state of the entire ensemble would be well-defined.

For example, let’s analyze an ensemble with 4 systems, labeled A, B, C, and D,
where

A B C D
Ey, E3 LEy L

Then, Eiot =E1 + 2E2+E3
Also, the distribution of the systems, 7 = (n1,n2 n3,...) = (1,2,1).
But there are many different supersystems consistent with this distribution. In
fact, the number of supersystems consistent with this distribution is
N! 4!

Qo () = = = —— =12
[ 121

What is the probability of observing a given quantum state, e.g. £;7 In other
words, what is the fraction of systems in the ensemble in the state E;?
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Figure 1: Canonical ensemble

The answer is 54.

However, it may be the case that many distributions fulfill the conditions of the
ensemble, (N,V . E, ).

For example, assume that there are two:
ny = 1,77,2 = 2777,3 = 1;Qtot =12

and

ny=2,n =0,n3 =2;Qs =6

Then the probability of observing, for example, E3 is % in the first distribution
and % in the second.
The probability in the case where both distributions make up the ensemble is:

_ 1 1><12+2><6_l
Ps =17 1246 3

In general,

o <i> Sz Qo (1) (1)
b= \N) ™ Tn ()
where the sum is over all distributions satisfying the conditions of (N,V, E,.,).
Then, for example, we could compute ensemble averages of mechanical quanti-
ties:
E=(E)=) PE,
J
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Figure 2: Canonical ensemble forming its own bath

and

P=(P)=) p;P
J
where p is the pressure.

0.2 Maximum term method

Recall:
(1 g Quat(W)ny (1)
Pim=\N) S Qu (@)
where

N!
Hjnj!'

Qtot(ﬁ)) -

As N — o0, nj — oo, for each j.

Thus, the most probable distribution becomes dominant. We can call this dis-
tribution, 7*.

Let ny = n; in the n* distribution. Then

1 Qtot(ﬁ)*)n; n

L She(nny  mj
PN Q@ — N
0.3 Most probable distribution

Which distribution gives the largest 2;4:7
Solve via method of undetermined multipliers:
Take natural log of Q..

In (R0t (7)) = In <%> = (Zn) In (Z n> - Zn Inn,,

where we have switched the index from j to ¢ and used Stirling’s approximation,
which becomes exact as n; — 0o :

Iny!l ~ylny —y.

We wish to find the set of n;’s, which maximize Q40t (1) and hence In(Qor (7)) :

8i In Qo (7)) — aZni — Banﬂl =0

T
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where o and 3 are the undetermined multipliers. Carrying out the differentiation

yields
In (Zm) —Inn; —a-pE; =0,j=1,2,3,...

or
nf=Ne e PEi j=1,23, .

NZZn;‘
J

Recalling that

yields
Ze‘aefﬁﬁj =1
J
or
e* = Ze_’gﬁj.
J
Also,
—o, —BE. —BE.
(E) = YimE,  YNete PEE; ¥ e "RE,
— N N Zj e PE;
and
* —BE;
p':ﬁ:eiaeiﬂEj:7e ’
TN e
where

Q= Z e PE;
J

and, as we discussed in the last lecture, is the partition function, the normalization
factor.

0.4 Canonical ensemble continued and connection to ther-
modynamics

Recall from last time, via the maximum-term method in the canonical ensemble:

* —a,—BE; —BE.
(E) = X,mE  YyNete PBE; ¥ e "HE,
= N N ./\[ o Zjefﬁﬁj

and

where,

0=y k.
J
as we discussed in the last lecture, is the partition function, the normalization factor.

In addition, as we have shown:

E=(E)= ijﬂj
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and
P=(P)=Y p;F;,
i

where P is the pressure.

If we differentiate the equation for (£},

d(E) =" E;dp; + Y pidE;
j J

OE,
:_%Z(lnpj+an)dpj+ij (ﬁ)NdK. (1)
J i -

Recall that the pressure,
or

This yields for equation 1

1 1
d(E) = 3 Zlnpjdpj ~3 Zandpj + ijpjdz.
J J J

[Note that
d Z pjInp;
J
= Z Inp;dp; + ijd (Inp;)
J J
_ dp;
= Zlnpjdpj +ij—. (2)
- - Dj
J J
Since,

J
dej = 0]
J
Thus, the right term in equation 2 is equal to 0. This yields
1
d(E) = de > pjlnp; | —(P)dV.
J

Recalling from the combined first and second laws (in intensive form, noting that
since N is a constant, intensive and extensive forms are equivalent):

dU =TdS — PdV
Since U < (E) and p < (p),

1
TdS — —=d iInp,
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Let
X =- ij Inp;.
J
Then,
1
dS = —dX.
S =77 3)

We know that the left side of the equation is an exact differential, so the right side
must be too, and thus, ,@LT must be a function of X. This means that

S = (X)dX = df (X).

Integrating,
S = f(X) + const, (4)

where we can set the arbitrary constant, const, equal to 0 for convenience.
Now we can make use of the additive property of S, and we can divide a system
into two parts, A and B. This yields:

S =8544+88 = f(XM) + f(XB). (5)

Note that
XATB = szyj Inp; ;,
)

where ¢ is the index for the possible states of A and j is the index for the possible

states of B. Then
XA = =" plpP(Inpf +InpP)
5]

== pilnp = pPnpf
7 ;

= X4+ x5
Thus, from equation 5,
S= XN+ f(XP) = F(XA+ XP).

For this to be so,

f(X) = kX,
where k is a constant. Thus,
S:—kijlnpj. (6)
J
From equations 3 and 4,
1

— —k

pT
and thus,

1
B=—=.

We designate k£ as Boltzmann’s constant, a universal constant.
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0.5 Microcanonical, Grand Canonical, and other ensembles

Recalling the formulation for S from equation 6, and noting that in the microcanon-

ical ensemble,
1
pj = 57

where we recall that €2 is the total number of states with the same energy, then

S = —kijlnpj =—k2$ln%
j J

J
=kl Q(N,V, E).

This is Boltzmann’s famous formula for the entropy.

In the Grand Canonical ensemble, the number of particles in each system is
allowed to fluctuate, but u is kept constant. This is called the (V,T, i) ensemble.
Also, there are other ensembles, such as (N, P,T), etc. Note that from an analysis
of fluctuations (Lecture 27), we shall see that in the macroscopic limit of a large
number of systems, all of these ensembles are equivalent.

0.6 Relation of thermodynamic quantities to Q

Recall that

S = —k> pjhp;
J
e_ﬂEj
p; = 0
Q = Zeiﬁﬁj
J

Plugging in the formula for p; into that for S yields

_ﬂﬁj e_ﬂEj

S = kS
2—g "

8B, / B
_k;eQ (—ﬁ—ln@)
(E)

Recalling our definitions from macroscopic thermodynamics and the fact that U <
(E) yields
A= —kThhQ
Similarly,
A 1
s = (%4 _ g (2@ T kInQ
oT VN oT VN
P = _<%> — kT (an)
az T,Ni 8_ TaNi
U = A+

~
9
Il
N
N
[\
—
Q
=
Q
~
<
2
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Thus, all thermodynamic properties can be written in terms of the partition func-
tion, Q(N,V,T)!

In order to compute @, all we need are the possible energy levels of the system.
We can obtain these from solving the equations of quantum mechanics.



