
10.37 Chemical and Biological Reaction Engineering, Spring 2007 
Prof. William H. Green 

Lecture 12: Data collection and analysis   
 
 

This lecture covers: Experimental methods for the determination of kinetic 
parameters of chemical and enzymatic reactions; determination of cell growth 
parameters; statistical analysis and model discrimination 
 
Continuing the stability and multiple steady-state discussion from Lecture 11: 
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Figure 1. Three steady-state conditions shown on a G(T) versus T graph. 
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stability: we want any perturbation δ z  from z  to be self correcting SS

 



  i.e. 
d ( )δ z v= −( e)δ z  
dt

•  

zδ  what does perturbation cause? 
- back to steady-state or off elsewhere?  

 
Figure 2. A small perturbation moves the system away from steady state. Does the 
system move back or does it move to elsewhere? 
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Matrix  
d ( )δ z M= ( )δ z  
dt
 
 if eigenvalues of M<0 then stable 
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Figure 3. Conversion (X) versus Temperature (T). 
 
Data Collection: 
 

- determining rate laws 
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Figure 4. Schematic of a general reactor. 
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Figure 5. Product concentration versus reactant concentration A. 
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∫ r dxdydz → rV  if homogeneous 
dV

“well-stirred” reactor 
(slow reactions) 
 
 
“no” conversion 
(really ~.1% conversion) 
C C= ± .1%   can measure (output-input) 0

   (r barely changes) 
*need very sensitive product detection 
“differential reactor” 
 
From data:  
 
guess mechanism 
vary ( k , k ) make a fit eq

 
1) Is mechanism consistent (error bars?) w/ data? 
2) How to regress k ? (least squares method) 
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