
10.37 Chemical and Biological Reaction Engineering, Spring 2007 
Prof. William H. Green 

Lecture 11:  Non-isothermal Reactors, equilibrium limitations, and stability 
 

This lecture covers: Derivation of energy balances for ideal reactors; equilibrium 
conversion, adiabatic and non-adiabatic reactor operation. 
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Figure 1.  Schematic of a PFR with small control volumes, each with a fixed P. 
 
PFR has many small control volumes, each with its own constant P. 
 

For isothermal –   Q  adjusted to keep T constant 
– Practical – have big cooling bath 
– or just operate at a particular temperature found after reactor 

built 
⇒ not a good strategy, for design we want to know ahead of 

time 
– before assumed uniform T, actually have hot spots 
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Where is T? In U total  and . cv r Tl ( )
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If P=Constant (Isobaric) 
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Assume isobaric, all ideal mixtures,  neglecting K.E., P.E., other energies 
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∑υ , ( )  i l H Ti cv ≡ ΔH  stoichiometric coefficient rxn ( )Tcv
i l
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N streams N rxns

− =∑ ∑ H Ti ( )cv Vcvυi,l rl ( )Tcv −∑V r ( )T ΔH  cv l cv rxn ( )Tcv
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Assume 
 
 Q U≅ −A( )T T   (conduction) a cv

area of 
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coolant 
heat reactor 

transfer 
coefficient 

 
Ws ≈ 0   (As a stirrer, heat negligible) 

   If designing engines W . s ≠ 0
 
Now just put into MATLAB and solve 
 
 
Chapter 8 in Fogler  – lots of special case equations 
    – be careful of assumptions 
 
Special case: Start up CSTR to a steady state 
   want to know ultimate T 
 

dT N streams N species
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All depend on TCV  
 

When we reach steady state, no more accumulation 
 
F F− + r V = 0  at steady-state A i, ,n A out A

 
See Fogler: 8.2.3 
 
If just one reaction, one input stream, one output stream, and the system is at 
steady-state: 
 

UA( )T T− +
= a i∑F

X , ,inputCp i (T T− in )
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In this special case, conversion and T linear 
1 reaction making heat as product is made. 
When ΔH = (-) Exothermic, reactor is hotter than cooling reactor (heat transfer rxn

important) 
 (+) Endothermic, reactor must be heated so that reaction will run 
 
 
G T( ) ≡ −( ΔHrxn )(−rA V FAo )   Generation 
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Heat removal 
 
K = 0   Adiabatic 
K = Big Cooling 
 

KTa i+TT n
c =  

1+ K
 
R( )T  linear with T 
 
G T( ) →  constant at high T 
   - not linear with T 
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Figure 2. Graph of G(T) versus T. Three steady-state points are shown where R(T) 
intersects with the heat of reaction. 
 
With multiple steady states must consider stability. 
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