10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. K. Dane Wittrup

Lecture 7: Batch Reactors

This lecture covers batch reactor equations, reactor sizing for constant volume and variable volume processes.

Batch Reactors

Run at non-steady state conditions

Which to choose? Batch vs. CSTR?

Figure 1. Schematics of a batch reactor and a CSTR.

Small Amount of Material	(small quantities)	(does not tie up equipment continuously)
Flexibility	+	-
Expensive Reactants	+	-
If product does not flow, Materials Handling (e.g. Polyn	+ ners)	-
Do not have to shut down and clean, less down time	-	+
Captial costs? For size of reactor, for given conversion	+ (concentration stay higher longer)	- ys
Operability & Control (T, P, p4) e.g. Exothermic reaction	-	(Manipulate only one setpoint, steady state. You can control additional variables. Such as flow rates.)

Material Balance

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$$

Cite as: K. Dane Wittrup, course materials for 10.37 Chemical and Biological Reaction Engineering, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

$$r_A V = \frac{dN_A}{dt}$$

Constant V,
$$r_A = \frac{dC_A}{dt}$$

In terms of conversion, $C_{Ao} \frac{dX_A}{dt} = r_A$

Integrating,
$$t = \int_{C_{Ao}}^{C_A} \frac{dC_A}{r_A}$$
 or $t = C_{Ao} \int_0^{X_A} \frac{dX_A}{r_A}$

1st Order Reaction $A \xrightarrow{k} B$

$$-r_A = kC_A = kC_{Ao}(1 - x_A)$$

$$t = C_{Ao} \int_0^{x_A} \frac{dx_A}{-kC_{Ao}(1 - x_A)} \longrightarrow t = \frac{1}{k} \ln\left(\frac{1}{1 - x_A}\right)$$

$$x_A = 1 - e^{-kt}$$

90% conversion
$$t_{90.0\%} = \frac{1}{k} \ln \left(\frac{1}{1 - 0.9} \right) = \frac{2.3}{k}$$
 (order of $\frac{1}{k}$)

$$2^{\text{nd}}$$
 Order Reaction $A + A \xrightarrow{k} B$

$$-r_{A} = kC_{A}^{2} = kC_{Ao}^{2}(1 - X_{A})^{2}$$

$$t = C_{Ao} \int_{0}^{X_{A}} \frac{dX_{A}}{-kC_{Ao}^{2}(1 - X_{A})^{2}} = \frac{1}{-kC_{Ao}} \int_{0}^{X_{A}} \frac{dX_{A}}{(1 - X_{A})^{2}}$$

$$t = \frac{1}{kC_{Ao}} \frac{X_A}{1 - X_A} \qquad X_A = \frac{kC_{Ao}t}{1 + kC_{Ao}t}$$

If $k_{\text{firstorder}} = k_{\text{second order}} C_{Ao}$, which is faster?

For a given Damkohler number, 1st order is faster. The second order reaction has greater concentration dependence. Exponential approach (1st order) is faster.

10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. K. Dane Wittrup

Lecture # Page 2 of 5

Cite as: K. Dane Wittrup, course materials for 10.37 Chemical and Biological Reaction Engineering, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Batch Cycle

How long should t be?

How high should X_A be?

Economic calculation: Compare economics of further conversion to a different use

of equipment

Chemical consideration: Will product degrade? Assume product stable.

Product produced in one cycle = $X_A C_{Ao}$ V

$$P_r(\text{Rate of Production}) = \frac{X_A C_{Ao} V}{t + t_d}$$

What value of t will maximize P_r?

If there is a maximum of P_r vs. t, $\frac{dP_r}{dt} = 0$

$$\text{Assume } t_d = \text{constant. } 0 = \frac{d \, \mathbf{P_r}}{dt} = C_{Ao} \, \mathbf{V} \frac{(t_{optimum} + t_d) \frac{dX_A}{dt} - X_A}{(t_{optimum} + t_d)^2}$$

$$(t_{optimum} + t_d) \frac{dX_A}{dt} - X_A = 0$$

Now specify kinetics. There may be no optimum.

1st order
$$X_A = 1 - e^{-kt}$$

$$\frac{dX_A}{dt} = ke^{-kt}$$

$$(t_{optimum} + t_d)ke^{-kt_{optimum}} - (1 - e^{-kt_{optimum}}) = 0$$

Can numerically solve for $t_{\it optimum}$.

Semi-batch Reactor

Figure 2. Schematics of two types of fed-batch reactors.

1) Why?

- To remove "poisonous" product
- Make room in reactor (expansion of product)
- If a reactant has a negative order effect on rate, add in small quantities
- Selectivity $A + B \rightarrow \text{Desired}$ (control) $A + A \rightarrow \text{Byproduct}$

Start with B, slowly feed A.

Figure 3. A fed-batch reactor with a slow feed of one reactant.

- To shift equilibrium, strip off product
- To control evolution of heat
- In biological cases
 - Fed-batch Fe
 - Feed in carbon source slowly to avoid overflow metabolism
 - (glucose)
 - O₂ sparingly soluble, must feed.

2) Balances

A Balance

Figure 4. Fed-batch reactor with a feed of B.

In - Out + Product = Accumulation

$$r_A V(t) = \frac{d(r_A V)}{dt}$$

10.37 Chemical and Biological Reaction Engineering, Spring 2007 Prof. K. Dane Wittrup

Lecture # Page 4 of 5

Cite as: K. Dane Wittrup, course materials for 10.37 Chemical and Biological Reaction Engineering, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

$$r_{A} V(t) = V \frac{dC_{A}}{dt} + C_{A} \frac{dV}{dt}$$
Liquid $V = V_{0} + v_{0}t$
flow
$$\frac{dC_{A}}{dt} = r_{A} - \frac{v_{0}}{V_{0}}C_{A}$$

B Balance

$$\frac{dC_B}{dt} = r_B + \underbrace{\frac{v_0}{V_0}C_{Bo}}_{\text{Addition}} - \underbrace{\frac{v_0}{V_0}C_B}_{\text{Dilution}}$$