
      

Problem Set 4 

Problem 1.  (RC(O)OCH2)3 → (RCH2)3 + 3 CO2 r = k[(RC(O)OCH2)3] 
A →  B + 3 C r = k[A] 

Given: 
T0 = 150 C k(T0) = k0 = 5*10-3 (min-1) Ea = 85 kJ/mol 
FA,0 = 2.5 mol/min yA,0 = 1 T = 227 C 
X = 0.9 P = 10 atm 

First, find k at the reaction temperature using Eq 3-21 from Fogler: 
E  1 1  85kJ / mol  1 1  
R 
 

T0 
−

T 
  −3 1  8.314⋅10−3 kJ /(mol ⋅K ) 


423.15K 

− 
500.15K 

 
−1k(T ) = k(T0) ⋅ e = 5 ⋅10  ⋅ e = 0.206255min 

 min  

Next, make a stoichiometric table for the flow system (see Table 3-4 in Fogler). This 
table applies to both a PFR and CSTR reactor. 

Species 

A 
B 
C 

Total 

Feed Rate to Reactor 
(mol/min) 

FA0


0 

0 


FA0 

Change within Reactor 
(mol/min) 

-FA0X 
FA0X 
3FA0X 

Effluent Rate from

Reactor (mol/min) 


FA = FA0(1 – X) 

FB = FA0X 

FC = 3FA0X 


FT = FA0(1 + 3X) 

Since this is a gas-phase reaction, with a change in the total number of moles, the 
volumetric flow rate (ν) will not be constant.  Simplify Eq 3-41 in Fogler for the steady 
state (constant P and T) ideal gas case to: 

ν =νo 



FT  =ν0 



FA0 (1 + 3X ) =ν0 (1 + 3X ) = 
FA0RT (1 + 3X )


 FT 0   FA0  P


a) CSTR 

The design equation for CSTR volume in terms of conversion is (Eq 2-13 in Fogler): 


FA0 X FA0 X FA0 X ν0 (1+ 3X )FA0 X FA0RT (1+ 3X )X
VCSTR,a = (− rA )exit 
= 

k[ ]A 
= 

k
FA  

= 
kFA0 (1 − X ) = 

Pk(1 − X )

 ν 


Plugging in numbers: 
 mol  .082 L ⋅atm (500.15K )(1 + 3 0.9 0.9 
 min  mol ⋅K  3 
2.5   ( )  ) 

VCSTR,a = =1655.36L ≈1.7 ⋅10 L
1(10atm)



0.206255 

min 

(1 − 0.9) 
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b) PFR 
Neglect pressure drop, so ν equation is the same as above. The design equation for a PFR 
in terms of conversion is (Eq 2-16 in Fogler): 

X X X X X 

V = F dX 
= F dX 

=F dX 
= F FA0RT (1+ 3X )dX = 

FA0RT (1+ 3X )dXPFR,b A0 ∫ A0 ∫ [ ]  A0 ∫ F A0 ∫ PkF ( − X ) Pk ∫ ( − X− r k A A 1 1 )
0 A 0 0 k 0 A0 0

ν 
From integration by parts (or an integral table): 

x2 

∫
(1 + mx)dx = (1 + m)ln 

1− x1 
 + m(x1 − x2 )(1 − x) 1 − x2 x1 

x (1 + mx)  1 When x1 = 0, this simplifies to: ∫ (1 − x) dx = (1+ m)ln
1− x2 


 
−mx2 

0 

Integrating and plugging in numbers gives: 
 mol  L ⋅atm  

PFR,b 
FA0RT 


( + ) 

 1 

 − 3X 


= 
2.5

min 


0.082 

mol ⋅K 
(500.15K )



4ln 

1 

 − 3 0.9 


V = 1 3 ln ( )  

Pk  1− X   (10atm)0.206255 1 
  1− 0.9   

 min  
= 323.63L ≈ 3.2 ⋅102 L 
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c) Now find X in a CSTR/PFR combination for a given V. 

First: PFR then CSTR, where the volume of each is ½ the volume calculated in parts a 
and b. 

FA0 
FA1, FB1, FC1 

X1 

FA2, FB2, FC2 

X2 

FA0
FA1, FB1, FC1

X1

FA2, FB2, FC2

X2

PFR equation will be the same as derived in part b, but with V = ½ VPFR,b and X = X1: 
1 V = 

FA0RT ( )3 ln
 1 

− 3 
 VPFR,bPk 

− ( )1+ 
 1 

+ 3X = 0 
2 PFR,b Pk 

 
1+ 

1− X1 

 

X1
 

⇒ 
2FA0RT 

3 ln
1− X1 


 

1 

There are many methods that can be used to find the roots of the above equation (solver 
function in Excel, fsolve in Matlab, etc). For example, using fsolve in Matlab: 

function [Xpfr]=partc; 

X0=0.1; %initial guess for X_pfr 

[Xpfr] = fsolve(@pfr_eqn,X0); 

return 

function F = pfr_eqn(X) 

k = 0.206255; %1/min
T = 227+273.15; %K 
FA0 = 2.5; %mol/min
P = 10; %atm 
R = 0.082; %L*atm/mol/K
V_pfr_b = 323.63; %L, from part b calculation 

F = V_pfr_b*P*k/(2*FA0*R*T)-(1+3)*log(1/(1-X))+3*X; 

return 

Can also solve for X1 by hand using an iterative method. For example, using the 
Newton-Raphson Method: 

f ( )xnxn+1 = xn − 
f '( )xn 

where f’(xn) is the derivative of f, evaluated at x = xn. 

Keep iterating until xn+1 ≈ xn. 

Regardless of the method used, should find that X1 ≈ 0.75 
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A mole balance on the CSTR gives: 
VCSTR,a 	 kVCSTR,a kVCSTR,a  FA2 0 = F − F + r = F 1− X − F 1− X − A = F X − X −A1 A2 A

 2 



 A0 ( 1) A0 ( 2 ) 2 

[ ]  A0 ( 2 1) 2 

 ν 


 

kVCSTR,a 
 PFA0 (1− X 2 ) 

 kVCSTR,aP (1− X 2 )0 = FA0 (X 2 − X1 )− 
2 

 FA0RT (1+ 3X 2 )
= FA0 (X 2 − X1)− 

2RT (1+ 3X 2 ) 

Again, solve the above equation either by hand or with a program to find that X2 ≈ 0.95 

Now: CSTR followed by PFR, where the volume of each is ½ the volume calculated in 
parts a and b. 

FA0FA0

FA2, FB2, FC2FA2, FB2, FC2FA1, FB1, FC1FA1, FB1, FC1

X1 X2X1 X2

CSTR equation will be the same as derived in part a, but with V = ½ VCSTR,a and X = X1: 

1 FA0RT (1 + 3X1 )X1 1 FA0RT (1 + 3X1)X1 

2 
VCSTR,a = 

Pk(1 − X1 )
⇒ 

2 
VCSTR,a − 

Pk(1 − X1)
= 0 

Plugging in numbers and solving gives X1 ≈ 0.83 

A mole balance on the PFR gives (see pg 15-16 in Fogler): 
0 = FA V − FA V +∆V + rA∆V 

Rearrange, divide by ∆V and take the limit as ∆V approaches zero to get: 
dFA = rA ⇒ dV = 

dFA = 
d[FA0 (1 − X )]

= 
− FA0dX 

= FA0 
dX 

dV rA rA rA − rA 

Integrate with the limits V = 0 when X = XA1 and V = ½ VPFR,b when X = X2 to get: 

1VPFR,b = FA0 

X 

∫ 
2	 dX 

= FA0 

X 

∫ 
2 dX 

=FA0 

X 

∫ 
2 dX 

= FA0 

X 

∫ 
2 FA0RT (1+ 3X )dX = 

FA0RT 
X 

∫ 
2 (1 + 3X )dX 

− rA [ ]  k FA PkFA0 (1 − X Pk ( −2 k A	 ) 1 X )
X1 X1 X1 ν 

X1	 X1 

From integration by parts (or an integral table): 
x2 (1 + mx)dx = (1 + m)ln

1 − x1 

 
+ m(x1 − x2 ) ⇒ 1VPFR,b = 

FA0RT 

(1 + 3)ln

1− X1 

 
+ 3(X1 − X 2 )


∫ (1 − x) 1 − x2 	 2 Pk  1− X 2  x1 

FA0RT 

(1+ 3)ln

1− X1 

 
+ 3(X1 − X 2 )


−

VPFR,b = 0 
Pk  1− X 2   2 

Plugging in numbers and solving gives X2 ≈ 0.93 
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Now, consider an isothermal batch reactor system with P0 = 2.7 atm. Make a 
stoichiometric table for the batch system (see table 3-3 in Fogler) 

Species 
A 
B 
C 

Total 

Initially (mol) 
NA0


0 

0 


NA0 

Change (mol) 
-NA0X 
NA0X 
3NA0X 

Remaining (mol) 
NA = NA0(1 – X) 


NB = NA0X 

NC = 3NA0X 


NT = NA0(1 + 3X) 

d) The volume of the batch reactor is fixed, so the change in moles as the reaction 
proceeds will cause an increase in P. For an isothermal, constant volume batch reactor 
(Eq 3-38 in Fogler, rearranged): 

P = P ( + 3X ) = 2.7atm( + 3 0.9 = 9.99atm0 1 1 ( ) ) 

e) Want to process 2.5 mol/min of cooking oil in the batch reactor (assume that the down 
time between batches is negligible). 

N A0 = 2.5 mol ⇒ N A0 = 

2.5 mol 

treacttreact min  min  

 mol  

Assuming ideal gas, Vbatch = 
N A0 RT 

= 
 2.5 

min 
treact RT 

P0 P0 

Find treact from design equation for a constant volume batch reactor (Eq 2-6 in Fogler): 

[ ]  k N A V kN (1 − XdX 
=
− rAV 

= 
k AV 

= V = A0 )
= k(1− X )

dt N A0 N A0 N A0 N A0 

Rearrange and integrate: 
X t 

∫
dX 

= k ∫dt ⇒ ln 
1 


 = kt ⇒ treact = 

1 ln 
1 


 

(1 − X ) 1 − x  k 1 − X 0 0 

Plug in numbers to get: 

 mol   1   mol   1  L ⋅atm 
2.5  ln RT 2.5  ln 0.082 (500.15K )
 min  1− X   min  1− ( )  mol ⋅K  20.9

Vbatch = 
kP 

= (0.206255min−1)(2.7atm)
= 423.94L ≈ 4.2 ⋅10 L 

0 

e) Since the characteristic reaction time is on the order of minutes, a flow reactor is 
recommended for this process. If minimizing volume is the most important design 
criteria, a single PFR is the best choice. If maximizing conversion is the most important 
design criteria, the half-size PFR followed by a half-size CSTR is the best choice. 

Cite as: William Green, Jr., and K. Dane Wittrup, course materials for 10.37 Chemical and Biological Reaction Engineering,

Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





