
10.34 Final Exam - Fall 2006
Solution

Overall: Average = 62.5 St. Dev. = 11.25

1) (20 points total) Average = 14.2 St. Dev. = 3.8
You are using the Gillespie Algorithm in a Kinetic Monte Carlo simulation of a biochemical
process forming a protein. This process occurs at only one active site in a cell, and it initiates
quickly, so there is almost always a growing protein attached to the site. This process runs
correctly most of the time, but in about one case in a million the protein folds the wrong way.
Ideally, the simulation could precisely determine what fraction of the cells will contain
N={0, 1, 2, …} copies of the misfolded protein after two days.

The simulation includes two processes: addition of an amino acid to the growing protein (time
constant approximately 1 millisecond) and misfolding of the growing protein (time constant
approximately 105 seconds). In the simulation, the protein detaches from the active site
immediately when the final amino acid is added, and a new protein immediately starts growing at
the site. The rates of both processes vary a little bit depending on the size of the growing chain;
these details are included in your simulation. The protein consists of 100 amino acids.

a) (10 points) Approximately how many random numbers will the computer have to
generate in order to simulate what happens in a single cell over the course of two days?

In the Gillespie algorithm, one needs to generate 2 random numbers for each reaction event; one
determines the time until the event, while the other determines the reaction that will take place at the
given time. So we need to estimate the tau for the system in order to estimate the number of time steps
that will be taken to reach 2 days (172800 seconds).

⎛ 1 1 ⎞
−1

τ = ⎜ + 5 ⎟ = 0.001 sec
event
⎝ 0.001s 1×10 s ⎠

So, in order to reach our goal of 2 days of simulation time, we need to divide the total time by the time
per event (on average) to get to total number of events that will take place (on average). This is:

Nevents = τ
tTotal

[0,1]) note : ln (rand [0,1]) = − 1 ≠ ln (rand [0,1]) = − 0.693
− ⋅ ln (rand

Nevents ==
tTotal =

172800 sec
= 1.728 ×108 events

sec τ 0.001 event

Since we said that each event requires the generation of 2 random numbers, the answer is:

Nrand # = 3.456 ×108

1
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

b) (10 points) Approximately how many cells will you need to simulate to compute the
ensemble average Nunfolded (t = 2 days) to a standard error of less than ± 1.0% ? If the
CPU time for the simulation is dominated by the cost of generating random numbers, and
generating each random number takes 1 microsecond of CPU time, approximately how
many CPU hours will be required for to compute this ensemble average to this level of
accuracy using Gillespie’s Algorithm?

There are several ways to solve this problem, all of which have “minor” aspects that must be taken care
of to get the right answer. Many of you were fortunate that you got approximately the correct answer,
but this was only because <N> ~ O(1) and σN ~ O(1).

Method #1:
It was mentioned that the Gillespie algorithm (and other MC methods) do not work very efficiently for
systems in which there are very minor channels, as is the case in this problem. This part will illustrate
this fact. The equation of important for this part is for the standard deviation in the fraction of events:

σ fi =
1− fi where fi is the fraction of times event i happens

fi fi ⋅ N proteins

It is also important to remember here that we are talking about the entire protein of 100 amino acids,
which means it takes 100 reaction events to generate a protein. However, one misfolding event will ruin
the entire protein. The fraction of misfolding can be calculated as:

1 misfold

105 sec a acid −6 misfolded proteins
.funfold = 1 . ⋅100 protein = 1×10 total proteins created a acid
10−3 sec

The problem asked us to calculate the number of trajectories needed to achieve an error of less than 1%
in the number of misfolded proteins after 2 days. This is done by applying the above two results:

σ fi = 0.01 =
1− fi 1− fi 1

× 10 proteins created
fi fi ⋅ N proteins

⇒ N proteins =
fi

⋅
(0.01)2 = 1 10

Since it takes the number of proteins is the number of events divided by 100 (1.728x106), we have:

Ncells > 5787 cells N proteins per cell = 1×10 10 1.728 ×106 ⇒Ncells = N proteins total

The problem also asked for the CPU hours necessary to perform this simulation if the CPU time is
governed by generating random numbers and that each random number take 1.0 microsecond to
generate. This is a simple calculation since we have already calculated the number of random numbers
per trajectory and the total number of trajectories. The result would be:

2
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

8 rand # −6 sec 1 hrWall Time = 5787 cells ⋅ 3.456 ×10 cell ⋅1.0 ×10 rand # ⋅ 3600 sec = 555.5 hrs

Wall Time > 555.5 hrs

Method #2:
You could also realize directly that the uncertainty in Monte Carlo simulations typically go as N-½. In this
case it is important to realize that the N you calculate here is number of misfolded protein events (not
necessarily the number of cells) that must occur to have an error in that number of less than 1%. You
can determine the time necessary as follows:

2

1 1
0.01

misfold misfold
misfold

misfold misfold misfold

NN
N

NN N
δ

δ

⎛ ⎞ ⎛≈ ⇒ ≈ =⎜ ⎟ ⎜⎜ ⎟ ⎝⎝ ⎠

2
⎞ 4
⎟ = 1 10 × misfold events
⎠

However, what we want is the number of cells needed…

Nmisfold / cell = Nmisfold per protein ⋅ N proteins per cell = 1×10 −6 ⋅1.728 ×106 = 1.728 misfolds per cell

4 Ncells > 5787 cells Ncells = Nmisfold needed / Nmisfold per cell = 1×10 /1.728 ⇒

The rest of this is the same as above, and the total time will be 555.5 hours.

Method #3:
You could also approach this problem from a confidence interval approach. In this it was important to
understand the difference between the sigma of the data and the sigma of the mean. This is the way
you would go about this (not dealing with the log-normal aspects of the distribution). This is a somewhat
weaker argument because it makes some assumptions about what you get from the analysis. The major
points of ambiguity are:

1.	 Technically, a X% confidence interval is the percentage of the time that the actual mean will fall
within the interval <Nmisfold>measured +/- CI, for the given number of degrees of freedom. What
we will estimate is the number of cells needed in order to be X% confidence that the true mean
will fall with the <Nmisfold>measured +/- 1% interval.

2.	 Since we don’t have any actual data, assumptions will need to be made regarding the mean and
standard deviation of the data. It will be assumed that <Nmisfold>measured = <Nmisfold>Ncells -> ∞ . It
will also be assumed that the sigma of the data is related to the expected mean as is the case for
a true Poisson distribution with Nsamples Æ ∞.

CI
⋅Nmisfold data

+ CI = 1.01 Nmisfold data
⇒ = 0.01

Nmisfold data

From Method #2, we found that the <Nmisfold> = 1.728, which leads to the following expression:

3

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

σ N ⎛ σ N ⎞
2

CI = 0.01728 ⇒ CI = tα ν,
misfold = 0.01728 ⇒ N > ⎜ t misfold

Ncells
cells

⎝
α ν, 0.01728 ⎟⎠

Now, to get a numerical answer, we need to make some assumption about how confident we want to be
in our 1% error, and get an estimate of the standard deviation in the Nmisfold per cell. Since ν will likely be
large, the t-distribution will basically be identical to the normal (z) distribution. If we want to be 99%
confident that the true mean lies in our 1% interval, then tα,ν ~ 2.6, and if we wanted to be 67%
confident, then tα,ν ~ 1.0. Also, for the Poisson distribution, the sigma can be approximately related to

≈the expected mean value: σ Nmisfold
1.728 1.315misfold N = =

This will results in the following values of Ncells for 99% and 70% confidence that the true mean will fall
within the +/- 1% of the expected value interval:

99% ⎛ 1.315 ⎞
2

4 67% ⎛ 1.315 ⎞
2

Ncells =
⎝
⎜2.6 ⋅

0.01728 ⎠⎟
> 2.9 ×10 cells Ncells =

⎝
⎜1.0 ⋅

0.01728 ⎠⎟
> 5787 cells

99% 67% Time (Ncells) > 2800 hrs Time (Ncells) > 555.5 hrs

You will notice that the other methods imply that a 67% confidence (which equates to about 1 standard
deviation) in the true mean being in the +/- 1% interval. If you wanted to have higher confidence that
the true mean would fall within the 1% error bounds, you would have to perform more simulations.

Method #4:
This method is somewhat similar to Method #2, and it starts with the equation for the uncertainty in the
evaluation of a Monte Carlo integral:

2 2 2 2
f − f similar to Nmisfold − Nmisfold δ I = ⎯⎯⎯⎯ =→ δ Nmisfold Nsamples Ncells

However, this is the absolute uncertainty in the Nmisfold, so we must divide by the expected value in order
to equate it to a relative error of 1%. From before, the expected value is 1.728 misfolds per cell.

2 2 2 2
δ Nmisfold =

1 Nmisfold − Nmisfold ⇒ 0.01728 =
Nmisfold − Nmisfold

Nmisfold Nmisfold Ncells Ncells

So this will give us an expression for Ncells in terms of the fluctuation in the number of misfolds per cell:

2 2
2Nmisfold − Nmisfold ⎡ 2 ⎤Ncells = (0.01728)2 = 3349 ⋅

⎣⎢
− ⎥ cells Nmisfold Nmisfold ⎦

4

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

The problem with this is getting an estimate of the fluctuation in the number of misfolds, which is
required to estimate the number of cells needed. It turns out that the above fluctuation is equivalent to
the variance in the data (for a large number of samples), as is seen below:

1σ = f − f = f − 2 f f + f note : f = f ≈ ∑ fi()2 1 ∑(i)2 1 ∑(i
2

i
2)

ν ν ν

σ 2 = f 2 + f 2 − 2 1 f f where : 2 1 f f f fi f) = 2
ν
1 ∑() = 2 2∑() ∑(i i iν ν

∴ σ 2 = fi
2 − f 2

As mentioned in Method #3, we can estimate the sigma in the data for a Poisson distribution as the
sqrt(expected value), which means that the variance can be approximated as the expected value (1.728).
Therefore, we have the following expression:

⎡ 2 2 ⎤ 2 ⋅ cells Ncells > 3349 ⋅ ⎢⎣
Nmisfold − Nmisfold ⎥⎦

= 3349 ⋅σ Nmisfold
≈ 3349 1.728 = 5787

This would again yield the same amount of CPU time, which was 555.5 hours.

From all of these analyses, you should see that if the expected value of the number of misfolded proteins
per cell was not O(1), then the answer would be significantly different (and many of you who happened
upon a reasonable answer would have been far off). As an example, consider two other cases where the
<Nmisfold> = 10-3 or 103 per cell. In these cases, one would need to simulate 1x107 and 10 cells,
respectively, to ensure an error of < 1%. This would translate into CPU times of 9.6x105 and 0.96 hours.
As you can see, it was fortunate that <Nmisfold> = O(1).

5

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

2) (30 points total) Average = 21.9 St. Dev. = 3.9
The inside of a pipe, inner radius R, wall thickness d, is coated with a very thin layer of silver,
which catalyzes the highly exothermic isomerization reaction (∆Hrxn < 0):

() () rate = rxn T ⋅ ⎜ − C ⎟ [] 2ethylene oxide E → acetaldehyde A k ()
⎛
C E 1 A ⎞ =

moles
⎜ K ⎟ m ⋅ s⎝ eq ⎠wall

(Exothermicity ∆Hrxn; Entropy change ∆Srxn.). A mixture of ethylene oxide and acetaldehyde is
flowing slowly down the pipe (so everything is laminar). The pressure at the inlet is Po, and at
the output it is 1.00 bar. The length of the pipe is L. The gas viscosity is η, and its heat capacity
is CP, both independent of temperature and composition. The thermal conductivity of the gas is
κ1, and the thermal conductivity of the pipe material is κ2. The diffusivity of both isomers is D
and the molecular weight is MW. The outside of the pipe is maintained at T = 40 ºC = 313 K.
Because the pipe is thin-walled and the fluid is a gas, you can neglect axial temperature
conduction in the pipe wall and gas phase. Make the ideal-gas approximation. You are
simulating this reactor using finite differences. Be sure to include all appropriate indices when
writing equations. The radial direction has been discretized using NR number of points, with
point j=NR on the boundary. Do not use Method of Lines to solve this problem.

Hint: In the full simulation there would be additional differential equations for the P and velocity
fields, but you are not asked to derive these here. You can act as if the P and velocity field
equations are already written out in finite difference form, and assume that all equations will be
solved simultaneously with your T and C equations. Note that P and velocity will vary with
position, and should include the appropriate indices when writing out the finite difference
equations. The heat flux through the pipe wall can be taken to be: q� = −κ2 (Tamb −T ,) d .i N R

Tamb = 313 K = 40 ºC

(), Ri N

(), 1Ri N −

(), 2Ri N −

(),i j

Centerline

R

d

Silver catalyst

Pipe wall

Gas-phase

(far from centerline or wall)

Flow

(i,1)

6

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

a) (10 points) Write the finite difference equations for the steady-state temperature (T) and
concentration of ethylene oxide (CE) at a generic mesh point (i,j) somewhere in the
interior of the pipe (not near the walls nor the centerline). Let i be the discretization
index in the axial direction, and j be the index in the radial direction.

In this part, we must derive the finite difference equations for a cylindrical geometry with diffusion,
convection, heat transfer, and a reaction at a surface. This is very similar to the problem tackled in HW
Set #8, insofar as the geometry is concerned. The governing equations for this system are:

∂ ρT 2
2 () κ1 ⎛ 1 ∂ ∂ ⎛ T ⎞⎞ κ1 ⎛ 1 ∂T ∂ T ⎞ v ⋅∇(ρC T P) κ1 ∇ T ⇒ vz ∂z

=
CP

⎜
⎝ ∂ ⎜ r

r ⎟⎠⎟⎠
=

CP
⎜
⎝ r r

+
∂ 2 ⎟

⎠
= ⋅

r r ⎝ ∂ ∂ r

E 2 1 ∂ ∂ C ⎞ C ∂C ∂ C ∂ C ⎞C D + +v ⋅∇() = ⋅∇ T ⇒ vz
∂
∂
C
z

E

= D ⎜
⎝

⎛
r r ∂ ⎜

⎝

⎛ r
∂r

E

⎟
⎠
+
∂
∂

2

z2

E

⎟
⎠

⎞
= D ⎜

⎝

⎛ 1
r ∂r

E

∂

2

r2

E

∂

2

z2

E

⎟
⎠

Since we are dealing with a gas (and the constant density approximation would be invalid), we must
write out the density as a function of T and P (using the ideal gas law) in the equation.

∂ P M⋅
RT

W ⋅T ∂ z ⋅ 1
2T ⎞() v Mz ⋅ W P v MW P ∂ κ ⎛ 1 ∂T ∂ vz = ⇒ = ⎜ + 2 ⎟z R ∂z R ∂z CP ⎝ ∂ ∂r ⎠∂ r r

Since we are only concerned with the interior points right now, and we never have to deal with boundary
conditions at the entrance, exit, or centerline, we will ignore these for now. The discretization equations
for the above equations are as follows (note the upwind difference was used in the convective term):

Heat equation terms:
P − P ∂2T T − 2T +T ∂T T −T∂P

= i j , i−1, j = i j, +1 i j, i j, −1 = i j, +1 i j, −1

∂z ∆z ∂r2
r ()2 ∂r 2∆r∆rzi rjj

Diffusion equation terms:
E E EE E 2 E∂C E Ci j, −Ci−1, j ∂ C Ci+1, j − 2Ci j, +Ci−1, j= =

∂z ∆z ∂z2 ∆z()2
zi zi

E E E E E
C , 1 − 2Ci j, +Ci j, 1 ∂ E
∂2C E
i j + − C Ci j , +1 −Ci j, −1= =

∂r2 2∆r∆ ∂()r 2 r rj rj

Now that we have the discretized form of the derivatives, we can substitute them into the PDEs above:

Heat equation:

vz ⋅
∂P β

⎛
⎜

1 ∂T
+
∂2T

2

⎞
⎟ where : β

R ⋅κ1= ⋅ =
⎝ ∂ ⎠ W C P∂z r r ∂r M ⋅

i j ⎜
⎛ P , −

∆z
i 1, j

⎠

⎞
rj ⎝

i j, 1

2
−
∆r

i j 1

⎠

⎞
⎜⎜
⎛

i j, 1

()∆

Ti j, T , −

⎠
⎟⎟
⎞

i j P− β ⎛ T + T , − T + − 2 + i j 1v , ⋅ ⎟ − ⋅ ⎜ ⎟ − β ⋅ 2 = 0
⎝ ⎝ r

7
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

⎛ vi j, ⎞ ⎛ v , ⎞ ⎛ 1 β β ⎞ ⎛ 2β ⎞ ⎛ 1 β β ⎞
⎜ ⎟P − ⎜

i j
⎟P − ⎜ + 2 ⎟T , + + ⎜ 2 ⎟T + ⎜ − 2 ⎟Ti j 1 = 0

⎝ ∆z ⎠
i j,

⎝ ∆z ⎠
i−1, j

⎝
⎜ rj 2∆r () ⎠

⎟ i j 1

⎝
⎜ () ⎠

⎟ i j,

⎝
⎜ rj 2∆r () ⎠

⎟ , −
∆r ∆r	 ∆r

Diffusion equation terms:
∂C E ⎛ 1 ∂C E ∂2C E ∂2C E ⎞ v = D + +z	 ∂z ⎜

⎝ r ∂r ∂r2 ∂z2 ⎟
⎠

⎛C E −C E ⎞ D ⎛C E −C E ⎞ ⎛C E − 2C E +C E ⎞ ⎛C E − 2C E +C E ⎞

v , ⎜

, i−1, j
⎟ − ⎜

i j+1 i j−1
⎟ − D ⎜ i j+1 i j

2
, −1 ⎟ − D ⎜ i+1, j i j

2
i−1, ⎟ = 0i j , , , , i j , j

i j

⎝ ∆z ⎠ rj ⎝ 2∆r ⎠ ⎝
⎜ () ⎠

⎟
⎝
⎜ () ⎠

⎟∆r	 ∆z

⎛ D ⎞
E

⎛ vi j, 2D 2D ⎞ E
⎛ vi j, D ⎞

E
⎛ 1 D D ⎞

E
⎛ 1 D D ⎞

E−⎜ 2 ⎟Ci+1, j + ⎜ + 2 + 2 ⎟Ci j, − ⎜ + 2 ⎟Ci− j − ⎜ + 2 ⎟C , +1 + ⎜ − 2 ⎟C , = 0⎜	 ∆z ⎟ ⎜ ∆z ∆r ∆z ⎟ ⎜ ∆z ∆z ⎟ ⎜ r 2∆r ∆r ⎟ ⎜ r 2∆r ∆r ⎟
⎝ () ⎠ ⎝ () () ⎠ ⎝ () ⎠

1,

⎝ j () ⎠
i j

⎝ j () ⎠
i j−1

b) (20 points) Write the steady-state boundary conditions for T and CE at the wall (i,NR).
What are the finite-difference equations for T and CE mesh points in the gas phase
immediately adjacent to the wall (i,NR-1)?

For this part, we are asked to write out the finite difference equations for the boundary at the wall (and
no other boundary conditions). The correct way to go about this is to equate the fluxes at the interface.
The concentration-field BC is something you should have seen already, with the need to match the
diffusive flux to the wall and the consumption rate/flux of the surface reaction. The temperature-field BC
is slightly different, since you have a flux from the wall to the gas, generation of heat at the wall, and a
flux from the wall to the ambient (through the pipe wall). However, the same idea of equating fluxes at
the boundary holds true because we are at steady-state and there is no accumulation of heat at the
interface. The species and thermal flux balances are as follows:

⎡	 E 1 A ⎤∂C E

−D = rate of reaction = krxn (T , R
⋅ ⎢C , − ⋅Ci N, R ⎥

i N 	

i N
⎣⎢

i N R
Eq ⎥∂r

=	 R
K ⎦

We can write out the quadratic approximation to the first derivative at the wall with the following:

3C E − 4C E +C E∂C E

= i N, R i N, R− , R1 i N −2

∂r 2∆ri NR =

This is then substituted into the flux balance to yield the final equation which is used to determine the
concentration of ethylene oxide at the wall (when solved simultaneously with the interior points).

will be < 0	 will be > 0
�����������
�������������
E E E3C − 4C +C ()⎛ i N, i N, − , ⎞

+
krxn T , R ⋅

⎡
C E −

1
⋅C A ⎤

= 0R R R

R R⎜⎜
⎝ 2∆r

1 i N −2
⎟⎟
⎠ D

i N
⎢
⎢⎣

i N, KEq
i N, ⎥

⎥⎦

8
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

For the temperature-field boundary condition, we have three flux terms and the following equations
relating them (see eqn 2.5-1 in Deen’s book):

Heat generated by Rxn = Flux to gas − Flux to ambient through pipe
G G G G� − iQ = n qi n qRxn i gas i pipe

Since the flux in the pipe and gas are both defined in the same direction (in terms of increasing r), the
n*q dot product of the unit normal vector of the interface with the flux vectors will both result in +q.

will be ≤ 0
������ ��������
will be < 0 will be ≤ 0 will be ≥ 0
����������������
������
������

⎛
() ⎡ E 1 A ⎤

⎟
⎞

⎜
⎛ ∂T

⎜k T , R
⋅ ⎢Ci N, R

− ⋅Ci N R ⎥ ⋅ ∆Hrxn = −κ1⎜ rxn i N K , ⎟ ⎜ ∂r⎝ ⎢⎣ Eq ⎥⎦ ⎠ ⎝

gas ⎞ ⎛ ∂T
− − κ2⎟ ⎜⎟ ⎜ ∂ri NR = ⎠ ⎝

pipe wall ⎞
⎟⎟

i=NR ⎠

The above equation shows how the terms are related. The flux to the gas will be (-) because the
temperature should increase as you get closer to the wall since there is no source term in the gas-phase.
The flux to the ambient will be (+) because the ambient is the heat sink (T will decrease as you approach
Tamb with increasing r). Therefore, the above equation makes qualitative sense. For a given amount of
heat generated by the reaction, part must go to the gas and part must go to the ambient, the distribution
will depend on the κ-values and the solution to the convection-conduction-diffusion problem in the
interior points.

Since the formula for the flux through the pipe wall was given, we simply need to insert that term and
write out the finite difference approximation for the dT/dr in the gas at the wall (similar to above for CE):

will be ≤ 0 will be ≥ 0 will be ≤ 0
����������������
����������� ��
�����
i N i N 1 i N⎛

k T ⋅
⎡
C E −

1
⋅C A ⎤

⋅ ∆H
⎞
+κ

⎛ 3T , R
− 4T , R −

+Ti N, R −2 ⎞ −κ
⎛ Tamb −T , R

⎞
= 0⎜ () ⎢ ⎥ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ rxn , R , R i N R rxn ⎟ 1

⎝
i N

⎢⎣
i N KEq

,
⎥⎦ ⎠ ⎝ 2∆r ⎠

2
⎝ d ⎠

We were also asked to write out the finite difference equations for the grid point directly adjacent to the
wall, point (i , j=NR-1). This is very straightforward and simply involves re-writing the general equations
for interior grid points, but using a specific index. This will show how the boundary condition equations
are necessary to specify the values of the state variables at the boundary, which show up in the finite
difference equations near the boundaries. They would be as follows:

⎛ vi N, R 1 ⎞ ⎛ vi NR −1 ⎞ ⎛ 1 β β ⎞ ⎛ 2β ⎞ ⎛ 1 β β ⎞
⎜

−
⎟P , R 1 − ⎜

,
⎟Pi− NR 1 − ⎜ +

∆r 2 ⎟Ti, R
+ ⎜

∆r 2 ⎟Ti NR 1 + ⎜ −
∆r 2 ⎟Ti NR −2 = 0

⎝ ∆z ⎠
i N −

⎝ ∆z ⎠
1, −

⎝
⎜ rNR −1 2∆r () ⎠

⎟
⎝
⎜ () ⎠

⎟ , −

⎝
⎜ rNR −1 2∆r () ⎠

⎟ ,

and

⎛ D ⎞
E

⎛ vi N, R 1 2D 2D ⎞ E
⎛ vi N R −1 D ⎞

E
⎛ 1 D D ⎞

E
⎛ 1 D D ⎞

E−⎜ 2 ⎟C 1,NR 1 + ⎜
− + 2 + 2 ⎟Ci N R 1 − ⎜

, + 2 ⎟Ci− NR 1 − ⎜ + 2 ⎟Ci,NR
+ ⎜ − 2 ⎟Ci NR −2 = 0⎜ ∆z ⎟ ⎜ ∆z ∆r ∆z ⎟ ⎜ ∆z ∆z ⎟ ⎜ r 2∆r ∆r ⎟ ⎜ r 2∆r ∆r ⎟

⎝ () ⎠
i+ −

⎝ () () ⎠
, −

⎝ () ⎠
1, −

⎝ NR −1 () ⎠ ⎝ NR −1 () ⎠
,

The state variables that are highlighted in bold in the above equations are the ones that are determined
by simultaneously solving the BC equations along with the interior points.

9
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

3) (50 points total) Average = 26.3 St. Dev. = 7.0
Frosty and Claus have published a model for the shape of mist droplets resting on mistletoe
leaves; of course the shapes depend on the angle at which the leaf is suspended from the ceiling.

In particular, their model predicts how the height of each drop depends on
1. the angle at which the leaf is suspended and
2. the contact area between the droplet and the leaf.

Height = Ymodel(angle, area; liquid parameters)

A postdoc in your research group has written a Matlab function that evaluates their model
predictions, and also a Matlab function that computes certain derivatives of how their model
predictions depend on the input parameters to the model (p1=the leaf-droplet surface tension
(N/m), p2=the droplet-air surface tension (N/m), and p3=the density of the liquid in the droplet
(g/cc)). The last two input parameters are expected to have values similar to those for pure water
(air/water surface tension= 0.72 N/m; density of water = 1.00 g/cc), but slightly changed due to
some of the biomolecules in the leaf dissolving into the droplet. For details on the Matlab
functions, which the postdoc has given to you, see the header files below. The postdoc is now in
northern Norway doing fieldwork and is unavailable for questions.

A hardworking UROP in your laboratory has put mist droplets on a mistletoe leaf, and
then photographed the leaf from different perspectives. Using a Matlab image-analysis program
she has recorded data on the leaf-droplet contact area and the height of 100 droplets, with the leaf
suspended at three different angles theta. (See figure). At your request, while you were busy
filming the 1st year skit, she repeated each experiment 400 times. She has now left for an
extended vacation to recuperate. Before she left town she gave you all the data as 120,000 rows.
(300 blocks of 400 rows each). You notice that there is perfect reproducibility for the angle and
area measurements, but large fluctuations in the measured heights.

Side View

θ; Angle to vertical

Area of Contact

Surface of Misletoe
leaf. height

10
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Trial Number Angle Droplet Number Area height

1 Angle1 Droplet 1 A1 h1 400 repeats

2 Angle1 Droplet 2 A2 h2 400 repeats

#

101 Angle2 Droplet1 A1 h101 400 repeats

#

300 Angle3 Droplet100 A100 h300 400 repeats

You have sorted the data (as shown in the table) so the first 400 entries are data measured with
the leaf at angle#1 for droplet #1; the next 400 are for droplet#2, etc. through all 100 droplets.
Then there are 400 numbers measured with the leaf at angle#2 for droplet#1, then 400 for
droplet#2, etc. Finally there are the 40,000 entries measured with the leaf at angle#3. The sorted
data is available in Matlab as matrix SortedRawData (120000 rows and 5 columns). You of
course will immediately condense each set of 400 replicates to a single point <height>n with an
estimated variance σ .n

a) (20 points) Write a Matlab function which takes SortedRawData and values of the 3
parameters as inputs, and returns as its output the corresponding value of χ2.

Each of the 300 experiments is repeated 400 times. First we will calculate the average of those 400
values and then calculate the standard deviation of the 400 values σ . Since the average is calculated

σ σ
using 400 different data points, the average will have a standard deviation of σ av = = . First

400 20
let us convert the 120,000 height values into 300 average heights and corresponding standard deviations.
The average height h and its standard deviation σ av are given by the expression below

h =
1 400

h and σ =
1 1 400

(h h)2∑ i av ∑ i −
400 i=1 20 399 i=1

This is done by the matlab program “calc_avg_std”.

Once the average values and standard deviation of the 300 entries are known we can calculate the χ2

value given by the model. The value of χ 2 is given by the expression below, where A is the contact area

of the drop and θ is the angle of the leaf. This calculation is performed by the matlab function
“calc_chi2”.

(i fi (, ; p1, p2 , p3))2
300 h − A θ

χ 2 = ∑ 2
σi=1 av i ,

11
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

In the above expression f (, ; 1, p , p3) is just short for f (,θi ; p , p2i A θ p 2 Ai 1 , p3) .

function chi2 = calc_chi2(SortedRawData, p1,p2,p3)
%calculates the chi2 for the data using the function "thickness"
%input data include the sortedRawData, p1 is leaf_tension, p2
%drop_air_tension, p3 is density of water

%output is the chi2

%first obtain the average heights and standard deviations from calc_avg_std
%notice only the 5th column is passed to the function
[height, std] = calc_avg_std(SortedRawData(:,5);

area = zeros(300,1); %extract area from SortedRawData
angle = zeros(300,1); % extract angle from SortedRawData

for i=1:300
 area(i) = SortedRawData((i-1)*400 + 1,4);
angle(i) = SortedRawData((i-1)*400 + 1,2);

end

chi2 = 0; %initialize the chi2 and start adding terms to it

for i=1:300
 chi2 = chi2+(height(i)- thickness(area(i), angle(i), p1, p2, p3))^2 ...
 /std(i)^2;

end

return;

function [avg, std] = calc_avg_std(height)
% takes in a vector of length 120,000 and returns a vector of length 300
% of the averages and vector of length 300 of the standard deviations.
avg = zeros(300,1);
std = zeros(300,1);

%first calculate the average
for i=1:3 %iterate over angles

for j=1:100 %iterate over drops
for k=1:400 %iterate over all the repeats

avg((i-1)*100 + j) = avg((i-1)*100+j) + height((i-1)*100*400...
+ (j-1)*400 + k);

end
end

end

avg = avg/400;

%now calculate the standard deviation

12
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

for i=1:3 %iterate over angles
for j=1:100 %iterate over drops

for k=1:400 %iterate over all the repeats
std((i-1)*100 + j) = std((i-1)*100 + j) + ...

 1/20 * ((avg((i-1)*100+j) - height((i-1)*100*400 + ...
 (j-1)*400 + k))^2/399)^0.5;

end
end

end

return;

b) (10 points) In their journal paper, Frosty and Claus suggest these values of the three
parameters: p1 = 0.95 N/m, p2 = 0.73 N/m, p3 = 1.02 g/cc.
 Suppose your function from part (a) is working and is bug-free. When you give it
these values for p1,p2,p3 the function returns as its output the number 682. Is Frosty &
Claus’s model, using their suggested parameter values, consistent with the experimental
data measured by your UROP? If you cannot determine this numerically right now, write
down an inequality that, if true, would indicate that there was a high probability that the
model and the data were consistent.

The χ 2 value should ideally be very close to the number of experimental values – number of fitted

parameters, in this case this is 300-3 = 297. Thus the χ 2 obtained, 682, is too high and the model is
most likely incorrect. The rigorous test is given by the p-value of the model. If the p-value if greater than
0.05 then the model is likely correct or if it is less than 0.05 then the model is most likely incorrect. The
matlab function which can be used to perform this test is chi2cdf and is given below.
p-value = 1-chi2cdf(χ 2 ,297) > 0.05.

We can also write the criteria as follows

∞ ν / 2
(1/ 2) xν / 2 1 e− x / 2 dx ≥ 0.05
∫
2 Γ ν

−

(/ 2) χ

Or
(/ 2, x / 2) Γ ν

≥ 0.05
Γ(/ 2) ν

c) (10 points) Your research advisor asks you to refine Frosty & Claus’s suggested
parameters by taking a single Newton-type step. Write a short Matlab function which
would accomplish this, returning p_refined.

The parameters will be refined by taking a Newton-type step so that the χ 2 value is minimized.

300 (hi − fi (, ; p1, p2 , p3))2
A θ

χ 2 = ∑ 2
i=1 σ av i ,

13
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Now let us calculate the gradient and the Hessian of this cost function.

⎡∂χ 2 ⎤

⎢ ∂ ⎥

⎢ p1 ⎥

2 ⎢∂χ 2 ⎥
∇ p χ = ⎢

∂p ⎥
⎢ 2 ⎥

⎢∂χ 2 ⎥

⎢ ⎥

⎢⎣ ∂p3 ⎦⎥

The kth element of the vector is given below.

∂χ
= −∑2

(hi − fi A θ
2

p1, p2 , p3)) ∂f2 300 (, ;
i

∂pk i=1 σ av i , ∂pk

The Hessian of the cost function is a 3 X 3 matrix and l,k element of the matrix is given below

∂2 χ 2 300 1 ∂ ∂ f f 300 (i fi (, ; p1, p2 , p3)) ∂2 fh − A θ
Hlk =

p p
= ∑2

σ 2 p
i

p
i −∑2

σ 2 ∂ ∂p
i

∂ ∂ ∂ ∂ pl k i=1 av i , l k i=1 av i , l k

In the above expression we will ignore the second term and thus the Hessian becomes

300 1 ∂ ∂fi fi THlk = ∑2 2 ∂ ∂
= 2X X

i=1 σ p p
av i , l k

Where

1 ∂fi
Xi j =
, σ i ∂p j

A Newton step in given below

−1

pm+1 = pm − ⎡
⎣

X T X |
pm
⎤
⎦

∇ p χ
2

For our problem the matrix X will have 300 rows and 3 columns. All the partial derivatives with respect to
the parameters required to calculate X and ∇ p χ

2 are given by the function “dh_dp”. This single step of

the Newton method is carried out by the matlab function “p_refined”.

function p_new = p_refined(p_old, height, sigma, area, angle)
%p_old is a vector containing leaf_tension, drop_air_tension and density
%of water. area is the vector of areas of the droplet and angle is the
%vector of angles made by the maple tree. These three vectors are of length
%300 and are extracted from SortedRawData in the same was as was done in
%the last problem.

14
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

X = zeros(300,3); % X is a matrix of 300 rows and 3 columns

for i=1:300 % fill all the rows

 X(i,:) = dh_dp(angle(i), area(i), p_old(1), p_old(2), p_old(3))...

sigma(i);

end

g = [0; 0; 0];

error = 0; %calculate the error

for i=1:300

g(1) = g(1) - (h(i) - thickness(angle(i), area(i), p_old(1), ...

 p_old(2), p_old(3))*X(i,1)/sigma(i)^2;

 g(2) = g(2) - (h(i) - thickness(angle(i), area(i), p_old(1), ...
 p_old(2), p_old(3))*X(i,2) /sigma(i)^2;

 g(3) = g(3) - (h(i) - thickness(angle(i), area(i), p_old(1), ...
 p_old(2), p_old(3))*X(i,3) /sigma(i)^2;

end

p_new = p_old - (X'*X)^(-1)*g;

return;

d) (10 points) Suppose that when you run the Matlab function asked for in part (c),
everything works wonderfully: χ2(p_refined) is very small, and the fit to the data looks
wonderful. You decide to take a second Newton-type step, starting from p_refined. But
this time you get the error message “Matrix singular or ill-conditioned”. What does this
mean? Your goal is to publish a good fit with information about the uncertainties in the
parameters. You have the good fit; what would you do next so that you will be able to say
something definitive about the uncertainties in p_refined, without performing more
experiments? Explain clearly.

If the Newton-type step starting from p_refined gives the error that the matrix is singular or ill-
conditioned then at least one of the three parameters cannot be determined accurately. The way to
diagnose the problem is to perform the singular value decomposition of the Hessian matrix X T X (this
Hessian matrix is a positive definite square matrix and SVD is the same as eigenvalue decomposition).
This will give three singular values one of which will be very close to 0. The column of right singular
matrix (V) corresponding to the 0 singular value is the direction which cannot be resolved by these sets
of experiments. There can be two problems;

1.	 The experimental design is such that you are unable to decouple the dependence of two
parameters.

2. The model is such that two parameters always occur in the model with a definite relation.

However in this case it is not practical to do any more experiments. What you should do next is to
change variables to θ such that

Tθ = V p

15
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Again coming back to the equation that we had to solve

⎣
T |

pm ⎦ p
2⎡X X ⎤∆ =p −∇ χ Eqn 1

THere ∆p is the update in the parameter values. We also know that ⎡
⎣

X X |
pm
⎤
⎦

is a symmetric square

Tmatrix. Thus the SVD of ⎡
⎣

X X |
pm
⎤
⎦

 is just the eigenvalue decomposition and can be written as

T T⎡X X | m
⎤ = ΣV V Eqn 2

⎣ p ⎦

Substituting this equation 2 back into the equation 1 we obtain the following

T 2V V p −∇ pΣ ∆ = χ

Now since we are transforming the variables from p to θ , we can write down the following

VΣ∆θ = −∇ χ 2
p

In the above equation we will ignore the values of ∆θ that correspond to the 0 eigenalues. The rest of
the eigenvalues are solved easily as follows.

∆ = [(−∇ χ)] θi
1 V T

p
2

i Eqn 3
σ i

The above equation shows that the data that we have is sufficient to determine the values of θ that
correspond to the columns of V which have a corresponding non-zero singular value. The error in these

1
directions is proportional to . The 95% confidence intervals on the parameters θ is given below

σ i

θ θ = i M ±
Z2.5

i ,

Where θ , is best value of θi calculated using equation 3. i M

iσ
,

16
Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Functions given in the problem statements:

function h=thickness(angle,area,leaf_tension,drop_air_tension,rho)

% computes the droplet height above a mistletoe leaf predicted by the model % of

Frosty and Claus.

% Written by Peter Postdoc, Dec. 15, 2006

% inputs:

% angle [=] radians that the leaf normal makes with vertical. For a leaf lying

% flat, angle=0.

% area [=] cm2 area of the leaf wetted by the droplet

% leaf_tension [=] N/m surface tension at the droplet/leaf interface

% drop_air_tension [=] N/m surface tension at droplet/air interface

% rho [=] g/cm3 density of the liquid in the droplet

% output:

% h [=] cm maximum thickness of the droplet

function derivs=dh_dp(angle,area,leaf_tension,drop_air_tension,rho)

% computes the partial derivatives of the droplet thickness

% with respect to surface tensions and density,

% as predicted by the model of Frosty and Claus.

% Written by Peter Postdoc, Dec. 15, 2006

% inputs:

% angle [=] radians that the leaf normal makes with vertical. For a leaf lying

% flat, angle=0.

% area [=] cm2 area of the leaf wetted by the droplet

% leaf_tension [=] N/m surface tension at the droplet/leaf interface

% drop_air_tension [=] N/m surface tension at droplet/air interface

% rho [=] g/cm3 density of the liquid in the droplet

% output:

% derivs is a 3-vector with components:

% derivs(1) [=] cm/(N/m) d(thickness of the droplet)/d(leaf-drop tension)

% derivs(2) [=] cm/(N/m) d(thickness of the droplet)/d(air-drop tension)

% derivs(3) [=] cm/(g/cm3) d(thickness of the droplet)/d(rho)

17

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

