
10.34 – Fall 2006 
Homework #8 - Solutions 

Problem 1 – Conduction/Convection (Beers’ text 6.B.1) 

This problems involves heat conduction in a flowing Newtonian fluid with a know velocity 
profile (incompressible flow in a tube). The governing equation for the system is the conduction 
equation with convection in the z-direction: 
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In this case, U is the average velocity of fluid and can be calculated from the given Reynolds 
number and fluid properties.  The boundary conditions for this problem were given in the radial 
part of the problem, but were somewhat ambiguous in the z-direction.  In the z-direction, a valid 
boundary condition for upstream would be that T = T0 at some distance upstream of the 
temperature change at the wall.  A BC for downstream could be that the gradient (dT/dz) far 
downstream is zero, or that T = T1 far downstream.  The zero derivative boundary condition is 
probably better since it will be less likely to skew a solution where you do not go far enough in 
the z-direction. The boundary conditions used in the problem were: 
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The boundary conditions in z are equivalent to starting 2 characteristic conduction times 
upstream and going to 10 downstream of the temperature jump. 

It is often useful to make problem non-dimensional before solving in order to formulate the 
problem in terms of as few parameters as possible.  For this problem, we choose the following 
non-dimensional variables: 

η ≡
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z θ ≡
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R R Pe  TW −T0 α ρCP ⋅ 
Carefully applying these non-dimensional variables, one will find the following equation: 
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You can see that the non-dimensional form is much simpler, and the boundary conditions are 
extremely simple, which is a nice aspect since the units in many problems can be tedious.  We 
also multiply through by the radius term to avoid any potential problems at r = 0. 

Now we need to work on the discretization, keeping in mind that in problems with convection, 
upwind differencing is usually the preferred method to ensure stability.  Therefore, we will use 
upwind difference in the z-direction for first derivatives, central difference in the radial direction 
for first derivatives, and central difference for the 2nd derivatives in both directions. 

r 
We need to take the 2-D grid of points and translate it 
into a 1-D vector of state variables for the entire 
physical space. This can be accomplished by the 
following equation: 
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This formula takes the vector for each radial cross-
section and stacks them on top of each other.  The 
discretizations are written as: 
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Now that we have the discretization formulae, we can rewrite the differential equation as a set of 
algebraic equations.  The internal points of the grid can be described by: 
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for : 2  i N −1 and 2 j N −1≤ ≤  z ≤ ≤  radial 
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The boundary conditions are defined as: 
θ , = 0 for i = 1 and 2 j Nradial −1≤ ≤  i j  

θ = 1 for i = N and 2 ≤ ≤  i j , z j Nradial −1 

⎧0 ξ i 1 ξ 0+ − ∆ < 

θi j , = ⎨ 

i=1 ( )  
for j = Nradial


⎩1 ξi=1 + − ∆ ≥  (  )  1 ξi 0 

θi j  , −
4 

i j, + +
1θ , +2 = for j = 1θ 1 i j  0

3 3 

We now have equations for all points in the grid, including the boundary conditions.  The BC’s 
will also require the b-vector (in A*x = b) to be specified at a few points in i, j space (with all 
other elements being zero).  The translation formula from earlier can be used to make a sparse 
matrix filled with the coefficients of the state variables.  For the internal points, the equations 
are: 
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Similar equations can be written for the boundary conditions that relate the state variables.  Note 
the all of the coefficients for a given equation occur on the same row of the A-matrix.  The 
A-matrix is multiplied by the state variable vector to yield the equations at each point in physical 
space. The system of linear equations that needs to be solved is: A ⋅θ = b . 
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You can also look at the sparsity pattern of the system matrix using the “spy” command.  This 
just shows the top left corner. You can see the tri-diagonal with two diagonals offset from the 
center by the number of points in the radial direction.  The gaps correspond to rows that specify 
the boundary conditions. 
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Problem 2: Reaction and Diffusion in a Spherical Catalyst Bead (Beers’ text 6.B.1) 

In the problem, we are concerned with a spherical catalyst particle with diffusion, and a given 
external mass transfer situation (Sherwood number).  The general equation for this situation is: 

∂S ⎛ 1 d  dS  ⎞ ρ V S  
= =0 DS gel  ,

2S RV ⇒ 0 = D , ⎜ ⎜
⎛ r2 ⎞ E m∇ +  S  gel  2 ⎟⎟ −∂t ⎝ r dr ⎝ dr ⎠⎠ Km + S 

One must be careful when dealing with the units in this problem, and converting everything to 
moles-m3-sec-kg may be advisable.  We can expand the spherical derivatives to get: 

2d S  dS  rρ V S  0 = r 2 + 2 − E m 

dr dr DS gel  K + S , m 

The boundary conditions for this problem are symmetry at r = 0, and that the fluxes are equal at 
r = R. These essentially result in: 

dS dS 
dr 

(  )  = 0 D , dr 
(r = R = kmass (S − Ssurface r = 0 S gel ) bulk ) 

We can do a discretization based on uniform spacing in the radial direction: 

⎛ S − 2S + S ⎞ ⎛  S − S ⎞ rρ V S  0 = r i+1 i i−1 + 2 i+1 i−1 − i E m i 
i ⎜ 2 ⎟ ⎜  ⎟
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4 1Si − Si+1 + Si+2 = 0 @  i  for  r  = 0
3 3 

Si − Si−1 = 
kmass  (Sbulk − Si ) @ i  for  r  = R


∆r DS gel 
, 

One thing to note is that boundary condition at R can behave differently depending on how it is 
written, due to numerical issues.  It is more robust if written as above.  I found that if it is written 
with the D and kmass on different sides, then you must multiple the residual by 1e6 or 1e9 in order 
to force tight convergence at this point. 
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Plot the concentration profiles (using a scaled radius): 
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Close-up of small radii 

Consumption Rates: 

Results for R = 0.0005 meters: 
[S] at the bead surface: 999.3425 moles/m^3

Consumption Rate: 1.4458e-011 moles/sec

Consumption Rate per kg of Enzyme: 2.7614 moles/sec S per kg E 


Results for R = 0.001 meters: 
[S] at the bead surface: 997.3773 moles/m^3

Consumption Rate: 1.1535e-010 moles/sec

Consumption Rate per kg of Enzyme: 2.7538 moles/sec S per kg E 


Results for R = 0.005 meters: 
[S] at the bead surface: 943.5237 moles/m^3

Consumption Rate: 1.2419e-008 moles/sec

Consumption Rate per kg of Enzyme: 2.372 moles/sec S per kg E 


Based on these consumption rates, one would want to chose the bead size of 0.5 mm, since its 
results in the highest consumption rate per mass of enzyme. 

Another point of interest may be the concentration of S at the particle surface, which are shown. 

One problem that I found was getting the boundary conditions to be satisfied well, particularly at 
the surface of the bead.  One would expect the flux calculated from the inside (D*dS/dr) would 
equal the flux from the outside (k*(Sbulk-Ssurface)), but this was not always the case. The 
boundary conditions are something that you definitely know and want to force to be true to high 
accuracy.  This may require that you weight the BC equations by multiplying them by something 
like 1e6 or 1e9. This will force these to be satisfied very accurately, as should force the equal 
flux condition to be true. 
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Homework 8 

November 1, 2006 

Problem3 

Velocity Profile 

Since the diffusion of A into the solvent film does not effect the density ρ and 
viscosity μ of the liquid, we can calculate the velocity profile independently 
of the concentration of A, B or AB in the solvent. The navier stokes equation 
for velocity vz that is changing only in y direction is as follows. 

∂2vz
ρgz + μ = 0  (1)  

∂y2 

The velocity is 0 at y = b and the derivative of velocity is 0 at the y = 0,  
which gives us our 2 boundary conditions. To obtain the second boundary 
condition we have assumed that the viscosity of air is 0. Solving the above 
equation analytically we get 

vz = −ρgz 
(y 2 − b2) =  85.09(y 2 − b2) cm/s  (2)  

2μ


The mass balance equations for any species i is


∂Ci ∂2Ci ∂2Ci 
vz = Di + + R(CA, CB, CAB)  (3)  

∂z ∂y2 ∂z2 

The boundary conditions of this problem in the y-direction is given by 
Equation 4. The boundary condtions for B and C implies that they don’t 
diffuse out of the liquid film. 

∂CACA(y=0) = HApA ∂y (y=b) 
= 0  

∂CB 
= 0  ∂CB = 0  

∂y (y=0) 
∂y (y=b) 

1 
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∂CC 
= 0  ∂CC = 0  (4)  

∂y (y=0) 
∂y (y=b) 

The boundary conditions of this problem in the z-direction is given by 
Equation 5. The boundary conditions at z = L is not rigorously true, but is 
a first guess approximation. 

∂CACA(z=0) = 0  
∂z (z=L) 

= 0  

CB(z=0) = CB0 
∂CB 

(z=L) 
= 0

∂z 

∂CCCC(z=0) = 0  
∂z (z=L) 

= 0  (5)  

Scaling Analysis 

Let us scale the problem such that Z = z/L and Y = y/b. Doing  so  the  
differential equation gets transformed to 

∂Ci ∂2Ci ∂2Ci 
vz = Di + + R(CA, CB, CAB)  (6)  

L∂Z b2∂Y 2 L2∂Z2 

∂Ci DiL ∂2Ci Di ∂2Ci L 
= + + R(CA, CB, CAB)  (7)  

∂Z vzb2 ∂Y 2 vzL ∂Z2 vz 

We can evaluate the approximate values of all the constant multipying factors 
in front of the different terms to get an approximate importance of each of 
these terms and the length scale that they are valid at. In our analysis the 
reference term is ∂Ci with which all the other terms are compared. 

∂Z 

∂2Ci• 
∂Y 2 

Lets look at the coefficient of ∂2Ci 
∂Y 2 . 

DiL 10−5 × 50 
= ≈ 10−3 

vzb2 85 × 0.12 

∂2CiThe dimensionless length scale over which 
∂Y 2 term becomes compa­

rable to term ∂Ci can be estimated as shown below. 
∂Z 

δCi δCi≈ 10−3 

δZ δY 2 

δY 2 ≈ 10−3δZ 

2 
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Thus if we divide the dimensionless length scale Z into 10 subdivisions 
i.e. δZ = 0.1, then dimensionless Y has to be divided into 100 parts. 
Thus for our case, the length scale of Y that is important is 0.01 ( 
y ≈ 0.001 cm). This analysis tells us that in y direction in absence 
of reaction the length scale that we have to use is of the order 0.001. 
Such fine meshing will result in a number of grid points 100 in the y 
direction and 10 in the z direction. Each species has concentration at 
each grid point and thus there are 3 variables per grid point. Thus this 
will result in a system of 3000 equations in as many variables and the 
Jacobian of the system will have an the order of 107 entries. This is a 
huge number and will almost surely result in matlab complaining about 
running out of memory, and if not that then the cpu time will be very 
large. This brings us to the requirement to do adaptive meshing. Later 
in the solution we will look at how to do adaptive meshing, so that we 
can capture the variations of concentration in the narrow region close 
to y=0. 

∂2Ci• 
∂Z2 

The coefficient of this term is 

Di 10−5 

= ≈ 10−9 

vzL 85 × 50 

The length scale over which ∂2Ci term becomes comparable to term ∂Ci 
∂Z2 ∂Z 

can be estimated as 

δCi δCi≈ 10−9 

δZ δZ2 

δZ ≈ 10−9 

The above analysis tell us that for our geometry the diffusion term in 
the z-direction will be significant if we chose our δZ close to 10−9. Thus  
for all practical purposes we can chose to ignore this term, although 
including it would not make any difference. 

• Reaction Term 

The importance of the reaction term can be judged by evaluating the 
coefficient in front of it 

kLCB0 10−2 × 50 × 1 
= ≈ 10−2 

vz 85 
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The length scale in the Z direction over which the reaction effects the 
concentration of A is 

δCA ≈ 10−2CA
δZ 

δZ ≈ 102 

Thus in our problem we dont expect the reaction rate to play a very 
important role. If the length of the channel was 5 m instead of 50 cm, 
then perhaps the reaction will enhance the absorption of A into the 
liquid channel. 

Nonuniform Grid 

To see the change in concentration of A in the z direction we divide the z 
axis into 2 regions, first region goes from 0 to 0.01 cm and the next region 
goes from 0.01 cm to 0.1 cm. In the first region we put 20 uniformly placed 
grid points and in the second region we put another 10 uniformly placed grid 
points. The presence of non-uniform grid points requires us to calculate new 
discretization formulas. To do this we look at any three points in a row with 
coordinates x1, x2 and x3, with the function value of f1, f2 and f3. We  can  
estimate the function which passes through these points using a second order 
lagrange polynomial (Beer’s book pg-226). The polynomial is given as 

(x − x2)(x − x3) (x − x1)(x − x3) (x − x1)(x − x2)
f(x) =  f1 + f2 + f3

(x1 − x2)(x1 − x3) (x2 − x1)(x2 − x3) (x3 − x1)(x3 − x2) 

To calculate the derivative and second-derivative at the central point 
x = x2, we just take the first derivative and the second derivative of the 
above equation and equate x = x2. Doing the same we obtain the following 
formulas for f ′(x = x2) and  f ′′(x = x2). 

f ′(x = x2) =  f1 
(x2 − x3)

+f2 
2x2 − x3 − x1 

+f3 
(x2 − x1) 

(x1 − x2)(x1 − x3) (x2 − x1)(x2 − x3) (x3 − x1)(x3 − x2) 
(8) 

f ′′(x = x2) =  
2f1 2f2 2f3 

+ + 
(x1 − x2)(x1 − x3) (x2 − x1)(x2 − x3) (x3 − x1)(x3 − x2) 

(9) 
Equation (8) gives the central difference formulation of the first derivative 

and can result in numerical noise leading to oscillations. For our problem we 
will just use the upwind difference scheme which can be written as 

f ′(x = x2) =  
(f2 − f1) 

(10)
(x2 − x1) 

4 

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to 
Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), 
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



∣ ∣ 

∣ ∣ ∣ ∣ 
∣ ∣ 

Flux of A 

We can calculate the flux of species A into the channel using the equation 

∂CA ∣
FA(z, y = 0)  =  −DA ∣ (11)

∂y ∣ 
z,y=0 

The average flux of A per unit area can be calculated using the formula 
given in Eqation 12, which is similar to using the trapezoid rule 

⎡	 ⎤ ∑ ∂CA ∣ ∂CA ∣ (zi − zi−1) ⎣	 ⎦FA = −DA ∣ + ∣	 (12)
∂y ∣ ∂y ∣ 2Li zi,y=0 zi−1,y=0 

∂CA ∣ −3CA(zi, 0) + 4CA(zi, 1) − CA(zi, 2) ∣ =	 (13)
∂y ∣ 

zi,y=0	 2Δy 

Program Structure 

The code that does all the above is given in 4 separate files 

•	 problem3 bvp nonuiformgrid.m This is the main program which ini­
tializes all the variables and calls fsolve. 

•	 solve c nonuniformgrid.m This function is called by fsolve and it 
returns the residuals to fsolve. One could ideally make it return the 
jacobian as well, but i have not done it here. Making the jacobian 
sparse and returning it will result in faster computations. 

•	 velocity.m This function returns the velocity of liquid at any given 
value of y. 

•	 reactionRate.m Returns the rate of reaction for a given conentration 
of A, B and AB. 

•	 derivative.m Calculates the derivative using finite difference at any 
given grid point. This function is useful when one is dealing with non­
uniform grid spacing. 

•	 doublederivative.m Calculates the second derivative finite difference 
at any given grid point. This function is useful when one is dealing 
with non-uniform grid spacing. 

5
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Result 

• Zero Reaction Rate 

The sample input output and grphs for this run is given below. 

>> problem3 bvp nonuiformgrid(0) 

Norm of First-order Trust-region 
Iteration Func-count f(x) step optimality radius 

0 1501 0.23 0.1 1 
1 3002 0.059986 1 0.113 1 
2 4503 1.81919e-018 1.04378 1.86e-007 2.5 

Optimization terminated: first-order optimality is less than

options.TolFun.

The total flux of A into the channel is: 4.9196e-007 mol/cm2/s^

>>


Concentration of A 

0 0.02 0.04 0.06 0.08 0.1 
y−axis (cm) 

Figure 1: Concentration of A without reaction 

• Zero Reaction Rate 

The sample input output and graphs for this run is given below. 

>> problem3 bvp nonuiformgrid(1e-2) 
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Figure 2: Magnified view at the boundary 

Norm of First-order Trust-region 
Iteration Func-count f(x) step optimality radius


0 1501 0.231242 0.17 1

1 3002 0.060299 1 0.164 1

2 4503 4.65734e-014 1.04396 5.34e-007 2.5


Optimization terminated: first-order optimality is less than

options.TolFun.

The total flux of A into the channel is: 4.928e-007 mol/cm2/s^

>>
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Figure 3: Concentration of A with reaction 
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Figure 4: Magnified view at the boundary showing concentration of A 
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Figure 5: Concentration of B with reaction 
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Figure 6: Magnified view at the boundary showing concentration of B 
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Figure 7: Concentration of AB with reaction 
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Figure 8: Magnified view at the boundary showing concentration of AB
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