
10.34 – Fall 2006 
Homework #10 
Due Date: Friday, December 1st, 2006 – 9 AM 

** Note: Please read the entire problem set before starting, there is important 
information throughout, even at the very end. For this problem, you do NOT need to 
have the Matlab code generate all of the results for part A-E by running it once. 
However, it should be able to take a temperature and number of points and generate all 
of the desired plots for that set of inputs.   

The most popular way to experimentally test a proposed geometrical structure for a large 
molecule (such as a protein) is by X-ray crystallography. However, some proteins are 
hard to crystallize; for these proteins, proposed geometrical structures can be tested using 
nuclear magnetic resonance (NMR). NMR measures the through-space magnetic 
coupling between two atoms which are not directly bonded to each other; this magnetic 
coupling is proportional to <1/R6>, where R is the distance between the two atoms. The 
symbol < > means the Boltzmann average over all the possible molecular geometries; in 
the classical limit and neglecting some minor complications due to the integral over the 
kinetic energy we can write: 
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This high-dimensional integral can be computed for a proposed structure using Monte 
Carlo techniques. Of course for a molecule with a large number of atoms this can be quite 
challenging. Here we instead ask you to compute this integral for a small molecule. 

Note that it is very easy to figure out the equilibrium geometry from this analytical 
expression for V (note V = 0 at the equilibrium geometry). We suggest you use 
Metropolis’s method, and start your Monte Carlo steps from the equilibrium geometry. 

Write a set of Matlab functions which use Monte Carlo integration to compute <1/RHH
6> 

at a given Temperature, where RHH is the distance between the two H atoms in HOOH.  

A. Determine the equilibrium structure at 0 K of HOOH by minimizing the 
potential energy of HOOH.  Plot the structure of the molecule in 3-D using 
the plot3 command in Matlab.  State the 0 K equilibrium values for 
<1/RHH

6> and <RHH> in Angstroms.  Do you expect the value of <RHH> to be 
different for T = 300 K, why? 

Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to 
Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), 
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



B. Use your code to solve for the value of <1/RHH
6> at 300 K. Report the value 

obtained for <1/RHH
6>, the value of <RHH>, and the number of Monte Carlo 

steps attempted and accepted. 

C. Plot the 3-D location of all of the MC points obtained in the above simulation 
using the plot3 command again. It may also be instructive to plot the 
equilibrium structure underneath the MC points.  This can be done with 
something like (obviously, this syntax will need to be modified to your problem): 

plot3(equil,’-‘,’linewidth’,4.0);

hold on;

plot3(MC_points,’.’);

hold off; 


D. Repeat this to generate plots for temperatures of 600 K, 1000 K, and 5000 K. 
Generate these plots with a minimum of 10000 MC steps.  Generate a 
histogram of the <RHH> values for each temperature, using the same x-axis 
scale for all figures.  Also create a histogram (50 bins) showing the 
distribution of potential energies that the molecule adopts for each 
temperature (you don’t need to use the same x-axis scale).  Find the bin with 
the largest frequency and compare this energy value with the value of kBT. 

E. Generate a plot for each T showing the evolution of the <1/RHH
6> as the 

number of MC points increases (ideally this curve will converge to the actual 
value of as N Æ ∞ ). 

F. For your answer in part B, give your best guess at the uncertainty in your 
predicted value of <1/RHH

6>, and explain how you derived it. 

Assume this is the expression for the potential energy of HOOH: 
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kJ −1 JDOH = 360 mole LH = 1.05 Å α = 1.5 Å kOO = 300 
m2 

−6 pJL0 = 1.6 Å kθ = 10 
radian 2 θ0 = 1.8 radians φ0 = 1.7 radians 

The R’s are Cartesian distances between the atoms. θHOO is the angle defined by 
H1-O1-O2 and θOOH is the angle defined by O1-O2-H2 (you can compute these using law 
of cosines). An expression for the dihedral angle φ is given below. 
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Hint: Molecule fixed axes 
Molecular potentials V do not depend on the position of the molecule in space, nor on its 
orientation, but only on the relative position of the atoms. Hence one can usually cut 6 
degrees of freedom (corresponding to the position of the molecule and its angular 
orientation (Euler angles)) out of molecular problems. In this particular problem, we 
suggest using molecule-fixed axes where the position of atom O1 sets the origin, atom O2 
lies on the x axis, and atom H1 lies in the x-y plane. Then one can remove these 6 degrees 
of freedom from the problem:  (xO1,yO1,zO1,yO2,zO2,zH1). (You can set them all equal to 
zero). When you remove the orientational degrees of freedom you pick up some Jacobian 
volume elements; including these the new expression for the integral (again 
approximating away some minor terms related to rotational kinetic energy) is: 
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In this molecule-fixed axis system, the expression for the dihedral angle is: 
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One other point of interest how to move around this multi-dimensional space, and the 
step sizes to take.  When you are moving atoms around in 3-D Cartesian space (not using 
internal coordinates), you are not very well constrained along the normal modes of the 
atom, i.e. you have a small chance of making a large jump from one low energy position 
to another. For example, consider a water molecule with the O centered at (0,0), one H1 
at (0,y1), and H2 at (x2,y2). A reasonable structure would have H1 at (0,1) and H2 at 
(0.95,-0.3). However, an equally plausible structure would have H2 at (-0.95,-0.3).  So if 
one was doing a MC simulation, with a random step of < 2 in x and y, then you could 
imagine that you may “hop” from one node to the other, since they are energetically 
equivalent. However, this is rare because all 3 variables must step the appropriate 
amounts: y1 step must be small, y2 step must be small, and x2 must be about -1.9.  The 
odds of all of these conditions happening during the same step are low, so many MC 
steps may be needed to “hop” between nodes.  You will also have to reject a large 
number of steps because many steps would lead to very large energy values.   

This leaves two options for Cartesian simulations: 
1.	 Take small steps which will be accepted more often, and will give reliable 

information about the areas of similar energy that are not separated by significant 
barriers. This will not allow you to probe multiple low energy wells separated by 
large barriers. 
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2.	 Take large steps that will be rejected most of the time (thus not give you very 
good statistics), but will allow for the possibility of finding other low-energy 
features that are far away or separated by large barriers.  This can be useful when 
trying to minimize a function with many local minima. 

A better method for molecules would be to take steps in internal coordinates (bond 
lengths, bond angles, and dihedral angles), so that you can better probe the feasible 
positions of the atoms because realistic step constraints can be more easily defined than 
with Cartesian coordinates. It is NOT necessary to solve this problem using internal 
coordinates. We suggest taking small random steps with a maximum displacement 
in each direction of 0.10 Å. If you use another method to probe phase space, please 
state it explicitly. 
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