
Backpropagation learning

MIT Department of Brain and Cognitive Sciences
9.641J, Spring 2005 - Introduction to Neural Networks
Instructor: Professor Sebastian Seung

Simple vs. multilayer
perceptron

Hidden layer problem

• Radical change for the supervised
learning problem.

• No desired values for the hidden layer.
• The network must find its own hidden

layer activations.

Generalized delta rule

• Delta rule only works for the output
layer.

• Backpropagation, or the generalized
delta rule, is a way of creating desired
values for hidden layers

Outline

• The algorithm
• Derivation as a gradient algoritihm
• Sensitivity lemma

Multilayer perceptron

• L layers of weights and biases
• L+1 layers of neurons

 x0 W 1,b1 ⎯ → ⎯ x1 W 2 ,b2 ⎯ → ⎯ L W L ,bL ⎯ → ⎯ xL

xi
l = f Wij

l x j
l−1 + bi

l

j=1

nl−1

∑
⎛

⎝
⎜

⎞

⎠

Reward function

• Depends on activity of the output layer
only.

• Maximize reward with respect to
weights and biases.

R xL()

Example: squared error

• Square of desired minus actual output,
with minus sign.

R xL()= −
1
2

di − xi
L()2

i=1

nL

∑

Forward pass

For l =1 to L,

ui
l = Wij

l x j
l−1 + bi

l

j=1

nl−1

∑

xi
l = f ui

l()

Sensitivity computation

• The sensitivity is also called “delta.”

si
L = ′ f ui

L() ∂R
∂xi

L

= ′ f ui
L() di − xi

L()

Backward pass

for l = L to 2

s j
l−1 = ′ f u j

l−1() si
l

i=1

nl

∑ Wij
l

Learning update

• In any order

∆Wij
l = ηsi

l x j
l−1

∆bi
l = ηsi

l

Backprop is a gradient update

• Consider R as function of weights and
biases.

∂R
∂Wij

l = si
l x j

l−1

∂R
∂bi

l = si
l

∆Wij
l = η ∂R

∂Wij
l

∆bi
l = η ∂R

∂bi
l

Sensitivity lemma

• Sensitivity matrix = outer product
– sensitivity vector
– activity vector

• The sensitivity vector is sufficient.
• Generalization of “delta.”

∂R
∂Wij

l =
∂R
∂bi

l x j
l−1

Coordinate transformation

ui
l = Wij

l f u j
l−1()+ bi

l

j=1

nl−1

∑

∂ui
l

∂u j
l−1 = Wij

l ′ f u j
l−1()

∂R
∂ui

l =
∂R
∂bi

l

Output layer

xi
L = f ui

L()
ui

L = Wij
L x j

L−1 + bi
L

j
∑

∂R
∂bi

L = ′ f ui
L() ∂R

∂xi
L

Chain rule

• composition of two functions
ul−1 → ul → Rul−1 → R

∂R
∂u j

l−1 =
∂R
∂ui

l
∂ui

l

∂u j
l−1

i
∑

∂R
∂bj

l−1 =
∂R
∂bi

l Wij
l ′ f u j

l−1()
i

∑

Computational complexity

• Naïve estimate
– network output: order N
– each component of the gradient: order N
– N components: order N2

• With backprop: order N

Biological plausibility

• Local: pre- and postsynaptic variables

• Forward and backward passes use
same weights

• Extra set of variables

x j
l−1 Wij

l ⎯ → ⎯ xi
l , s j

l−1 Wij
l ← ⎯ ⎯ si

l

Backprop for brain modeling

• Backprop may not be a plausible
account of learning in the brain.

• But perhaps the networks created by it
are similar to biological neural networks.

• Zipser and Andersen:
– train network
– compare hidden neurons with those found

in the brain.

LeNet

• Weight-sharing
• Sigmoidal neurons
• Learn binary outputs

Machine learning revolution

• Gradient following
– or other hill-climbing methods

• Empirical error minimization

	Backpropagation learning
	Simple vs. multilayer perceptron
	Hidden layer problem
	Generalized delta rule
	Outline
	Multilayer perceptron
	Reward function
	Example: squared error
	Forward pass
	Sensitivity computation
	Backward pass
	Learning update
	Backprop is a gradient update
	Sensitivity lemma
	Coordinate transformation
	Output layer
	Chain rule
	Computational complexity
	Biological plausibility
	Backprop for brain modeling
	LeNet
	Machine learning revolution

