MIT Department of Brain and Cognitive Sciences
9.641J, Spring 2005 - Introduction to Neural Networks
Instructor: Professor Sebastian Seung

Appendix E

Of spikes and synapses

This lecture introduces a model for a network of interacting neurons. The model runs
the risk of making everyone unhappy. The mathematician may complain that it is too
complex, making analysis too difficult, and precluding general and powerful theorems.
The biologist will complain that the model is a dismally poor caricature of the real
neural networks of the brain, and reject it as a figment of some deluded theorist’s imag-
ination.

Nevertheless, the model is a useful starting point, because it captures some essential
features of biological neural networks. We can always make the model more complex
later if it turns out that something important was missing. On the other hand, it may
also be possible to simplify the model if some of its features turn out to be irrelevant.

The model has two types of variables, synaptic conductances and neural membrane
voltages. Synaptic conductances modulate neural voltages continuously throughout
time. However, neural voltages affect synaptic conductances only sporadically, through
discrete events called action potentials or spikes. The dynamics of the network is driven
by this interplay between voltages and conductances.

The influence of synaptic conductance on voltage will be described using the clas-
sic model of a leaky integrate-and-fire neuron. The influence of spikes on synaptic
conductance will also be described using a leaky integrator model. As you learn about
these models, you will also absorb the bare essentials of the biophysics of neurons.

E.1 Neural voltages are measured with intracellular
electrodes

There is an electrical potential difference between the inside and outside of a neuron’s
membrane. This difference is called the “transmembrane voltage™ or simply the “volt-
age” of the cell. To measure it, one uses a (micro)electrode created by heating and

Figure E.1: Microelectrode recording
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Figure E.2: Passive response of a neuron to small steps of applied current.

%4

Figure E.3: Equivalent circuit for the membrane of a neuron, valid for small deviations
from the resting potential. The membrane is modeled with a capacitor, a resistor, and a
battery.

pulling a piece of capillary glass to create a very fine tip. The electrode is filled with
electrolyte, and a wire leading to an amplifier is inserted into its barrel.

Two techniques are used to establish electrical continuity between the inside of
a neuron and the inside of an electrode. In the “sharp electrode” technique, the cell
is impaled on the tip of the electrode. In the whole-cell patch technique, a blunt tip is
sealed to the outside of the cell membrane, and a small rupture is made in the membrane
by suction. Either method establishes electrical access to the cell, so that current can
flow back and forth between it and the electrode. A wire leads from the electrolyte to an
amplifier, and is compared with another wire that is connected to a reference electrode
in the solution bathing the neuron. These two wires allow the amplifier to sense the
voltage difference between the inside and outside of the cell (Figure E.1). With the
usual convention of an outside voltage that is zero, the inside voltage is typically —70
mV. This is called the resting potential of the neuron.

E.2 Neurons respond passively to small inputs

If current is passed between the two wires, it also passes through the membrane of the
neuron that stands between them. The electrical properties of the membrane can be
characterized by measuring the resulting changes in its voltage.

Figure E.2 shows the response of a neuron to small steps of applied current. The
voltage starts at the resting potential V7, initially changes linearly, but then approaches
a limiting value V. The difference V, — V7, is proportional to the applied current
1,

app-»

I,
Voo - VL = IappRL = PP
gr
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Figure E.4: Spiking of biological neuron in response to applied current. (a) Spike train.
(b) f-1 curve.

This linear relationship between voltage and current means that the cell membrane
behaves like a resistor governed by Ohm’s Law. The proportionality constant is Ry,
the resistance of the membrane. The inverse of the resistance is g;, = 1/Ry, which is
called the leak conductance.

The approach to V, is not instantaneous, but roughly exponential with some time
constant 7,,,. This behavior can be modeled as

dV
CE = —gL(V—VL)+Iapp (E.1)

Here we’ve introduced a new parameter C' = 7,,g1,, which is the product of the time
constant and the leak conductance. This parameter is the membrane capacitance.

The electrical circuit equivalent to Eq. (E.1) is shown in Figure E.3. The membrane
can be approximated as a resistor, a capacitor, and a battery. Such an electrical circuit is
called “passive,” because of its linear behavior. It is a good approximation to a neuron
for small perturbations about the resting potential.

ion channels

E.3 Neurons are excitable by large inputs

The passive model described above is only valid for small applied currents. If the cur-
rent exceeds some threshold value, the behavior becomes very nonlinear. A positive
pulse in the voltage is generated, with an amplitude of up to 100 mV and a duration
of about 1 msec. This behavior is called an action potential, or spike. Once the action
potential is initiated, it will continue even if the applied current is removed. This phe-
nomenon is known as excitability. If the current is maintained at a large enough value,
the neuron will fire action potentials repetitively (Fig. E.4a).

The relationship between frequency and applied current is called the current-
discharge relationship, or the f-I curve. An example is shown in Fig. E.4b. If the
current is below a threshold value, known as the rheobase, there is no spiking at all.
The frequency rises from zero at threshold, and increases with increasing current. The
shape of the curve shown in Fig. E.4 is typical of neurons in the central nervous system
of vertebrates. However, other shapes are possible.

The data shown was taken using intracellular recording. However, because spikes
have such large amplitude, they can also be measured in brain tissue by an extracellular
electrode, which is less demanding to use than an intracellular electrode. A spike
sets up current flow in the extracellular space, which leads to sub-millivolt changes in
potential that can be detected with an extracellular electrode.
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Figure E.5: The leaky integrate-and-fire neuron. (a) Repetitive spiking. The initial
voltage is V7. After application of a constant current, the voltage rises to V. There
a spike is said to have occurred, and the voltage is reset to V. This cycle of leaky
integration and firing occurs repeatedly. Vy, = —74 mV, gr = 25nS, Vp = —54
mV, V; = —60 mV and C' = 500 pF. (b) f-I curve. The dashed line is a linear
approximation that is exact in the limit of infinite current.

E.4 A neuron is a leaky integrator with a threshold

Models of neural excitability are much more complex than the passive model given
above, because they involve nonlinearity. Such models are outside the scope of this
lecture. Instead we’ll discuss the minimal modification of the passive model necessary
to capture some of the basic features of spiking neurons.

The modification is simple: supplement the linear equation with a threshold cross-
ing condition. Whenever the voltage reaches a threshold value Vjy, a spike is said to
happen, and the voltage is reset to the value Vj.

IfV =V, then V := Vj, (E.2)

The values of the parameters Vy and Vj vary depending on the type of neuron that
is being modeled. The combination of Eqgs. (E.2) and (E.1) is known as the “leaky
integrate-and-fire neuron,” or just “integrate-and-fire neuron” for short. Below thresh-
old, it behaves like a leaky integrator. When the threshold is crossed, it fires an action
potential.

A numerical simulation of the model is shown in Fig. E.5a. A constant suprathresh-
old current is applied, causing repetitive firing. Every time the voltage reaches thresh-
old, it is reset immediately. The actual time course of the voltage during a spike is not
modeled. For visualization purposes, it is common to “paste” spikes on top of graphs
of voltage of integrate-and-fire neurons. However, these are just to make the graph look
more biological, but are not really part of the model.
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E.5 The model f-I curve

‘When the applied current I,,,, is larger than a threshold value, the neuron spikes repet-
itively. This threshold value will be denoted Iy = g1,(Vyp — V). An example f-I curve
is plotted in Figure E.5b. For large currents, the rate is approximately linear, with a
slope approaching
df 1
—
dlapp — C(Vo — Vo)

as Iopp — 00. This is the gain of the f — I curve. The exact form of f(I,pp) is given
in the exercises. While it is a bit complex, it has the simple approximation shown in
Figure E.5b,

(E.3)

Fr [Lapp — 9L<Vl/2 - V)|t
C(Vo — Vo)

where we’ve defined the rectification nonlinearity

(E4)

u, u>0
0, <0

[u]t = max{u,0} = {

This is exact in the limit /,;,, — oc, but has error at small rates (dashed line).

The simple linear behavior at high applied currents is due to the fact that the leaki-
ness of the integrate-and-fire neuron becomes negligible at high firing rates. Therefore
the voltage increases approximately linearly with time from V to Vj during interspike
intervals. Making the neuron spike requires injecting an amount of charge given by
C(Vp — Vp). The time taken for this is the ratio of the charge to the current I, which
yields the expression for firing rate.

Exercise E.1. Show that the frequency of spiking is

gr gr(Vo — Vo) )]_1
= 2= |1 1 E.5
d C [og( +Iapp_9L(V9_VL) (£

when I,py, is larger than g, (Vo — V).

Exercise E.2. Derive the approximation (E.4), which has vanishing error as 1qp, —
oo. The voltage Vy 5 = (Vg + Vi) /2 is the time average of V during repetitive firing,
as V increases linearly from Vy and Vy. Therefore —gp (V4,2 — VL) is the average
current dissipated by the leak conductance. Hint: Use the Taylor series expansion
llog(1 + 2)] L = 1/ +1/2+ O(1/22).

Exercise E.3. Suppose that V' is measured with respect to V7, in units of Vy — Vj, and
applied current is measured in units of the threshold current g1,(Vy — Vo),
_V-w P — ey

Vo -V PP g (Ve — Vo)

v

Show that the leaky integrate-and-fire model can be written in terms of these dimen-
sionless quantities as

TE = —v+ iapp
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Figure E.6: Synaptic transmission. (a) Response to a single spike. (b) Response to a
spike train.

with T = C/gr. In the new variables, the threshold voltage and the threshold current
are equal to each other, ig = vg = (Vo — V)/(Vo — Vo). The reset voltage is vy =
Vo =Vz)/ (Vo = Vo).

Exercise E.4. Show that the rate of repetitive firing is

-1
T Tapp — 10

when iy, > 1.

E.6 A synapse is a leaky integrator

Communication at a synapse from neuron j to neuron ¢ can be studied by stimulating
j with one electrode, and recording the response of ¢ with another. Current is applied
to neuron j to make it generate a spike. The membrane conductance of neuron % is
measured while holding its voltage constant. As shown in Figure E.6, a single j spike
causes the ¢ conductance to increase suddenly, and then decay exponentially. If the
spikes are part of a train, their effects summate.
A simple model for this is to increment the synaptic conductance g;; by
gij = gij + -2 (E.6)
Tij

whenever j spikes, and otherwise let it decay exponentially according to

d9i _ _9u (E.7)
dt Tij
So the ¢ + j synapse is a leaky integrator, counting spikes but forgetting them over
time periods longer than 7;;. The response to a single spike is a decaying exponential.
The area under this exponential is given by the parameter «;;. When neuron j spikes,
the update (E.6) is made for all 7.

The conductance g;; is due to proteins called ion channels embedded in the mem-
brane of the postsynaptic neuron. When the presynaptic neuron spikes, it secretes a
packet of neurotransmitter. When the neurotransmitter molecules bind to the ion chan-
nels, they cause the channels to become permeable to ionic currents. In effect, the
neurotransmitter opens very tiny holes in the membrane of the postsynaptic neuron.
Eventually the ion channels close again. This can happen for a number of reasons,
such as the neurotransmitter unbinding. To model this closing process, we say that g;;
decays as a simple exponential with time constant 7;;.

chemical signaling, not electrical



E.7. SYNAPTIC CONDUCTANCES MODULATE MEMBRANE VOLTAGE 221
4

c—— % 9Li % 9n - % gin
-l- 4 -l- Vie - -l- Vin
I

Figure E.7: Equivalent circuit for a neuron, including its synaptic inputs

E.7 Synaptic conductances modulate membrane volt-
age

We’ve seen how voltages influence synaptic conductances through discrete events
called spikes. Now we’ll discuss how synaptic conductances modulate voltages,
thereby closing the loop and completing our model.

The equivalent circuit of Fig. (E.3) is modified by adding extra branches, one for
each synapse coming into the neuron. In Fig. (E.7), the ¢ < j synapse is represented
by a battery with voltage V;; in series with a conductance g;;. The synapses are all
connected in parallel with the membrane capacitance. In parallel there is also a battery
with voltage V1; and conductance gr ;.

The current through synapse ¢ « j is given by the product of g;; and the driving
force V; — V;;. This implies that the current reverses sign when the transmembrane
voltage crosses V;;, which is why V;; is called the reversal potential of the synapse.

So Iapp in Eq. (E.1) is replaced by — 3~ g;;(V; — Vi;) to obtain

dVi

i = —gLi(Vq:—VL)—;gij(Vi - Vij) (E.8)

This equation, the reset condition (E.2), and Eqs. (E.6) and (E.7) for the synaptic con-
ductances define a complete model for a network of integrate-and-fire neurons. The
model is summarized in the box.
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Network of leaky integrate-and-fire model neurons The dynamical variables
are N membrane voltages V;, and up to N2 synaptic conductances g;;. During
the intervals between spikes, the dynamical variables obey the equations

dv;

o —gri(Vi = Vi) — Zj:gij(vi - Vij) (E.9)

dgi; Gij

o Y E.10
dt Tij ( :

Whenever the membrane potential V; reaches a threshold value Vp, itis reset to Vj,
and the conductances of all synapses emanating from neuron j are incremented,

IfV; = Vg,then  V; := Vpand (E.11)
Yy (E.12)

9ij = Gij + —

Tij

E.8 Excitatory versus inhibitory synapses

Let’s take a more careful look at how synaptic conductances affect the membrane volt-
age. You can think about the dynamics of the equivalent circuit in Fig. (E.7) as a tug
of war between batteries. Each battery wants to pull the membrane voltage to its own
reversal potential. The strength of each battery in this tug of war is set by its corre-
sponding conductance. Let’s see how this works mathematically.

If all conductances were constant in time, the voltage V; would exponentially ap-
proach the value
_ 9V + Ej 9i; Vij
= a

where the total conductance G, is defined by

Vo

Gi=gLi+ Y g
J

This result can be obtained by setting dV; /dt = 0 and solving Eq. (E.9) for V;. In other
words, the voltage approaches a value given by the weighted average of the reversal
potentials, where the weightings are given by the corresponding conductances. If one
conductance is much larger than the others, it will dominate the average, so that the
voltage will approach its reversal potential.

A synaptic conductance is defined as excitatory if its reversal potential is greater
than the threshold voltage, and inhibitory if its reversal potential is less than the thresh-
old voltage. You might have expected that an excitatory synapse would be defined as
one with a reversal potential that is greater than the resting potential. But this is not a
good definition. If the reversal potential is between the resting potential and the thresh-
old, then the synapse will not be able to drive the neuron to fire. In fact, when the
neuron is near threshold, the synapse will be dragging the voltage downward.
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E.9 Limitations of the model

cable theory
active dendrites
synaptic dynamics
voltage dependence of NMDA receptor

E.10 References

Detailed accounts of the biophysics of neurons can be found in Koch, Dayan and Ab-
bott, Johnston and Wu, and Hille.

Troyer and Miller discuss the modeling of cortical neurons as leaky integrate-and-
fire neurons.



