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Principal component analysis



Hypothesis: Hebbian synaptic
plasticity enables perceptrons
to perform principal
component analysis



Outline

Variance and covariance

Principal components

Maximizing parallel variance
Minimizing perpendicular variance

Neural implementation
— covariance rule



Principal component

e direction of maximum variance in the
Input space

 principal eigenvector of the covariance
matrix

» goal: relate these two definitions



Variance

e A random variable
fluctuating about OX = X—(X)
ItS mean value.
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* Average of the square of the
fluctuations.



Covariance

e Pair of random
variables, each Ny = X — (X
fluctuatmg about X, = X, — (X,)
ItS mean value.

<5X15X2> = <X1X2> - <X1><X2>

* Average of product of fluctuations.



Covariance examples

positive covariance negative covariance
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Covariance matrix

e N random variables
 NXN symmetric matrix

Cy = {xx;) = (% )(x;)

e Diagonal elements are variances



Principal components

Cvy = \vg . eigenvectors with k

Cvs = Ao largest eigenvalues

Cvup = A\pUg » Now you can calculate
them, but what do they
mean?
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Handwritten digits



Principal component in 2d




One-dimensional projection




Covariance to variance

 From the covariance, the variance of
any projection can be calculated.

e Let w be a unit vector

<(WT x)2> —(w' x>2 =w'Cw

=quw



Maximizing parallel variance

* Principal eigenvector of C
— the one with the largest eigenvalue.

w =argmaxw' Cw

w:w=1

A (C) = maxw' Cw

w:w=1

*

=w 'Cw



Orthogonal decomposition




Total variance 1s conserved

(Jel*) = (g %) + (l=L])

 Maximizing parallel variance =
Minimizing perpendicular variance

exgman([z) %) = argmin|z. |
w:|lw|=1 w:|w|=1



Rubber band computer




Correlation/covariance rule

e presynaptic activity x
e postsynaptic activity y
 Hebbian

AW = 77yX
Aw=(y—y )(x- (X))



Stochastic gradient ascent

e Assume data has zero mean
e Linear perceptron

y=W'X AW= XX W
P _twrow
Aw) = T v 2



Preventing divergence

e Bound constraints



Oja’s rule

e Converges to principal component
 Normalized to unit vector

AW = 7(yx—y"w)



Multiple principal components

* Project out principal component

* Find principal component of remaining
variance



clustering vs. PCA

 Hebb: output x input
* binary output
— first-order statistics

* l[inear output
— second-order statistics



Data vectors

X, means ath data vector
— ath column of the matrix X.

X, means matrix element X
— ith component of x,

X IS a generic data vector
X; means ith component of x

a



Correlation matrix

e Generalization of second moment
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