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9.641 Neural Networks 

Problem Set 9: 
Delta Rule and Gradient Descent 

(Due before class on Thursday, Apr. 28) 

1.	 Download the new face dataset and the file perceptron delta.m. 

The face dataset consists of a training and a test set, both including faces and 
nonfaces. The second file is sample MATLAB code for online gradient training

of a perceptron.


After every 100 examples, the code draws the weight vector as an image, and

plots the learning curve. In general, a learning curve is defined as a graph of 
some measure of performance as a function of time. Here we plot the mean 
squared error that the perceptron has made up to that point. One can imagine 
many other measures of performance, such as the mean squared error only on 
the last 100 examples, etc. 

(a) The program terminates after 10000 example presentations (of course you 
can change this number if you like). Experiment with the learning rate η to 
find the value that minimizes the final level of the learning curve. Submit 
this value of η and the learning curve that the program produces. 

(b) Describe in words what you observe when the the learning rate is either 
substantially higher or lower than this optimal value. 

(c) In class we wrote the equations for gradient learning of a perceptron with­
out the bias term. Derive the equations for the case with a bias term. You 
can check your result by comparing with the MATLAB code. 

(d)	 OPTIONAL: Compute the performance of your network on the test set 
test. To do so, threshold the output of your network and compare it to the 
true label given in testlabels. Submit your performance value and a 
.mat file with your w vector via email. The three highest performances 
will be rewarded with 10 extra points! 

2.	 Download the files mnistabridged.mat, an abridged version of the MNIST 
database containing 5000 training examples and 1000 test examples of the hand­
written digits. 

Train a collection of ten simple perceptrons to each detect a different 
digit class. To do this, you could simply add an outer loop around the 
perceptron delta.m code for the different digits. But it’s more elegant 
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(and better practice in MATLAB) to define a 10 × 784 matrix W that holds the 
10 perceptron weight vectors in its rows. Then the squared error function is 

E(W) =
1 � 

|yµ − f(Wxµ + b)|
2 (1) 

2 
µ 

where µ is the index labeling the training samples, The 784×1 vector xµ contains 
the µth image in the training set. The function f has been extended to take a 
vector argument, simply by applying it to each component of the vector. 

µThe desired output yµ is now a 10× 1 binary vector. The ith component y = 1i 

if the input xµ belongs to the ith digit class, while all other components are zero. 
We’ll use the convention that the class of “zero”s corresponds to i = 10. The 
bias b is also a 10 × 1 vector. 

(a) Write the gradient descent updates for Wij and bi. 

(b) Implement these updates in MATLAB using the logistic function f(x) = 
1/(1 + exp(−x)) and some constant learning rate. It may help you to use 
the sample code in perceptron delta.m as a starting point. Modify 
the visualization segment of the code so that all ten weight vectors are 
shown as images. Also add a bar graph that shows the outputs of the ten 
perceptrons, along with an image of the current input vector. This will help 
you visualize how well your perceptrons are doing. 
Find a good learning rate, and run your code until the learning curve be­
comes approximately flat. Submit your code, along with images of the final 
synaptic weights of the network, and learning curves. 

3.	 Gradient Descent on a Quadratic Surface. 

Although the cost functions that we attempt to minimize using gradient descent 
rarely have a simple quadratic form over the entire surface, the surface can often 
be approximated as quadratic in the vicinity of a minima. For this reason, we 
can study the convergence of the gradient descent algorithm by understanding

its performance on a quadratic surface.


Consider the cost function

1 

E = w T Qw,
2 

where Q is symmetric and positive definite, and the gradient descent update 
Δw = −η ∂E .

∂w 

(a) Show that the dynamics of w using the gradient update can be written as 
w(t + 1) = (I − ηQ)w(t). 

(b) What is the largest value of η for which this update is stable? 
1(c) Assume that we select η = 

λmax 

, where λmax is the largest eigenvalue 
of Q. Show that as t → ∞, the convergence rate of the error is largely 
determined by the ratio λmin/λmax, where λmin is the smallest eigenvalue 
of Q. 
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4.	 Gradient Descent Simulation. 

For these problems, plot the trajectories of w on top of a 2D contour plot of 
E. Use the domain x ∈ [−1, 1], y ∈ [−1, 1], and the two initial conditions

w(0) = [−0.6,−0.3]T and [0.8, 0.5]T . Simulate until E < 0.0001.


You will probably use some or all of the following MATLAB functions: plot,

meshgrid, contour, hold and line.


(a) Simulate gradient descent on the cost function 

1	
2E = (13w 2 + 2w1w2 + 13w
2
)
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for various initial conditions on w using a constant η. What are λmax and 
λmin? Experiment with η. What value of η requires the fewest steps? 

(b) Now simulate gradient descent on the cost function 

1	
2E = (13w 2 + 24w1w2 + 13w
2
). 
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What are λmax and λmin for this problem? What value of η works best 
here? 

(c) Provide a geometrical explanation for the relative convergence rates of the 
two algorithms. 

5.	 Gradient Descent for Linear Perceptrons. 

Consider a linear perceptron y = w T x, and the cost function 

1 µ)2E = (yµ − w T x ,	 (2) 
2 

µ 

where the vectors xµ contain the inputs in the training and/or test data and the 
scalars yµ are the corresponding outputs. 

(a) Show that minimizing this cost function is equivalent to minimizing a cost 
function of the form 

1 TE = 
2 
w	 Aw − bT w. 

Give A and b. What is the gradient descent update rule Δw on this cost 
function? 

(b) Using a change of variables, show that the gradient update in part (a) is 
equivalent to the gradient update for the cost function 

1 
˜TE = w	 A w̃. 
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Give w̃? Based on problem 2, what can we deduce about the convergence 
rate of E in equation 2? 
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