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Abstract 

We introduce a novel set of features for robust object 
recognition. Each element of this set is a complex feature 
obtained by combining position- and scale-tolerant edge-
detectors over neighboring positions and multiple orienta­
tions. Our system’s architecture is motivated by a quantita­
tive model of visual cortex. 

We show that our approach exhibits excellent recogni­
tion performance and outperforms several state-of-the-art 
systems on a variety of image datasets including many dif­
ferent object categories. We also demonstrate that our sys­
tem is able to learn from very few examples. The perfor­
mance of the approach constitutes a suggestive plausibility 
proof for a class of feedforward models of object recogni­
tion in cortex. 

1 Introduction 

Hierarchical approaches to generic object recognition 
have become increasingly popular over the years. These are 
in some cases inspired by the hierarchical nature of primate 
visual cortex [10, 25], but, most importantly, hierarchical 
approaches have been shown to consistently outperform flat 
single-template (holistic) object recognition systems on a 
variety of object recognition tasks [7, 10]. Recognition typ­
ically involves the computation of a set of target features 
(also called components [7], parts [24] or fragments [22]) 
at one step and their combination in the next step. Fea­
tures usually fall in one of two categories: template-based 
or histogram-based. Several template-based methods ex­
hibit excellent performance in the detection of a single ob­
ject category, e.g., faces [17, 23], cars [17] or pedestri­
ans [14]. Constellation models based on generative meth­
ods perform well in the recognition of several object cate­
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gories [24, 4], particularly when trained with very few train­
ing examples [3]. One limitation of these rigid template-
based features is that they might not adequately capture 
variations in object appearance: they are very selective for a 
target shape but lack invariance with respect to object trans­
formations. At the other extreme, histogram-based descrip­
tors [12, 2] are very robust with respect to object transfor­
mations. The SIFT-based features [12], for instance, have 
been shown to excel in the re-detection of a previously seen 
object under new image transformations. However, as we 
confirm experimentally (see section 4), with such degree of 
invariance, it is unlikely that the SIFT-based features could 
perform well on a generic object recognition task. 

In this paper, we introduce a new set of biologically-
inspired features that exhibit a better trade-off between in­
variance and selectivity than template-based or histogram-
based approaches. Each element of this set is a feature ob­
tained by combining the response of local edge-detectors 
that are slightly position- and scale-tolerant over neighbor­
ing positions and multiple orientations (like complex cells 
in primary visual cortex). Our features are more flexible 
than template-based approaches [7, 22] because they allow 
for small distortions of the input; they are more selective 
than histogram-based descriptors as they preserve local fea­
ture geometry. Our approach is as follows: for an input im­
age, we first compute a set of features learned from the posi­
tive training set (see section 2). We then run a standard clas­
sifier on the vector of features obtained from the input im­
age. The resulting approach is simpler than the aforemen­
tioned hierarchical approaches: it does not involve scanning 
over all positions and scales, it uses discriminative methods 
and it does not explicitly model object geometry. Yet it is 
able to learn from very few examples and it performs sig­
nificantly better than all the systems we have compared it 
with thus far. 
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Band Σ 1 2 3 4 5 6 7 8 

filt. sizes s 
σ 
λ 

grid size N Σ 

orient. θ 

patch sizes ni 

7 & 9  
2.8 & 3.6 
3.5 & 4.6 

8 

11 & 13 
4.5 & 5.4 
5.6 & 6.8 

10 

15 & 17 
6.3 & 7.3 
7.9 & 9.1 

12 

19 & 21 
8.2 & 9.2 

10.3 & 11.5 
14 

23 & 25 
10.2 & 11.3 
12.7 & 14.1 

16 

27 & 29 
12.3 & 13.4 
15.4 & 16.8 

18 

31 & 33 
14.6 & 15.8 
18.2 & 19.7 

20 

35 & 37 
17.0 & 18.2 
21.2 & 22.8 

4 ; 
π0; π 
2 ; 

3π 
4 

4 × 4; 8 × 8; 12 × 12; 16 × 16 (×4 orientations) 

Table 1. Summary of parameters used in our implementation (see Fig. 1 and accompanying text). 

Biological visual systems as guides. Because humans We extend the standard model and show how it 
and primates outperform the best machine vision systems can learn a vocabulary of visual features from natu­
by almost any measure, building a system that emulates ral images. We prove that the extended model can 
object recognition in cortex has always been an attractive robustly handle the recognition of many object cate-
idea. However, for the most part, the use of visual neuro- gories and compete with state-of-the-art object recogni­
science in computer vision has been limited to a justifica- tion systems. This work appeared in a very prelim­
tion of Gabor filters. No real attention has been given to inary form in [18]. Our source code as well as an 
biologically plausible features of higher complexity. While extended version of this paper [20] can be found at 
mainstream computer vision has always been inspired and http://cbcl.mit.edu/software-datasets. 
challenged by human vision, it seems to never have ad­
vanced past the first stage of processing in the simple cells 2 The C2 features 
of primary visual cortex V1. Models of biological vi­
sion [5, 13, 16, 1] have not been extended to deal with Our approach is summarized in Fig. 1: the first two lay-
real-world object recognition tasks (e.g., large scale natu- ers correspond to primate primary visual cortex, V1, i.e., the 
ral image databases) while computer vision systems that are first visual cortical stage, which contains simple (S1) and 
closer to biology like LeNet [10] are still lacking agreement complex (C1) cells [8]. The S1 responses are obtained by 
with physiology (e.g., mapping from network layers to cor- applying to the input image a battery of Gabor filters, which 
tical visual areas). This work is an attempt to bridge the gap can be described by the following equation: 
between computer vision and neuroscience. � � � 

(X2 + γ2Y 2) 2π 
�


Our system follows the standard model of object recog- G(x, y) = exp  −
2σ2 

× cos X ,

λ 

nition in primate cortex [16], which summarizes in a quan­
titative way what most visual neuroscientists agree on: the where X = x cos θ + y sin θ and Y = −x sin θ + y cos θ. 
first few hundreds milliseconds of visual processing in pri- We adjusted the filter parameters, i.e., orientation θ, ef-
mate cortex follows a mostly feedforward hierarchy. At fective width σ, and wavelength λ, so that the tuning pro-
each stage, the receptive fields of neurons (i.e., the part of files of S1 units match those of V1 parafoveal simple cells. 
the visual field that could potentially elicit a neuron’s re- This was done by first sampling the space of parameters and 
sponse) tend to get larger along with the complexity of their then generating a large number of filters. We applied those 
optimal stimuli (i.e., the set of stimuli that elicit a neuron’s filters to stimuli commonly used to probe V1 neurons [8] 
response). In its simplest version, the standard model con- (i.e., gratings, bars and edges). After removing filters that 
sists of four layers of computational units where simple S were incompatible with biological cells [8], we were left 
units, which combine their inputs with Gaussian-like tun- with a final set of 16 filters at 4 orientations (see Table 1 
ing to increase object selectivity, alternate with complex C and [19] for a full description of how those filters were ob-
units, which pool their inputs through a maximum oper- tained). 
ation, thereby introducing gradual invariance to scale and The next stage – C1 – corresponds to complex cells 
translation. The model has been able to quantitatively du- which show some tolerance to shift and size: complex cells 
plicate the generalization properties exhibited by neurons tend to have larger receptive fields (twice as large as simple 
in inferotemporal monkey cortex (the so-called view-tuned cells), respond to oriented bars or edges anywhere within 
units) that remain highly selective for particular objects (a their receptive field [8] (shift invariance) and are in gen-
face, a hand, a toilet brush) while being invariant to ranges eral more broadly tuned to spatial frequency than simple 
of scales and positions. The model originally used a very cells [8] (scale invariance). Modifying the original Hubel 
simple static dictionary of features (for the recognition of & Wiesel proposal for building complex cells from simple 
segmented objects) although it was suggested in [16] that cells through pooling [8], Riesenhuber & Poggio proposed a 
features in intermediate layers should instead be learned max-like pooling operation for building position- and scale-
from visual experience. tolerant C1 units. In the meantime, experimental evidence 
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Given an input image I , perform the following steps:. 

S1: Apply a battery of Gabor filters to the input image. 
The filters come in 4 orientations θ and 16 scales s (see 
Table 1). Obtain 16×4 =  64  maps (S1)s 

θ that are arranged

in 8 bands (e.g., band 1 contains filter outputs of size 7 and

9, in all four orientations, band 2 contains filter outputs of

size 11 and 13, etc).


C1: For each band, take the max over scales and po­

sitions: each band member is sub-sampled by taking the

max over a grid with cells of size NΣ first and the max

between the two scale members second, e.g., for band 1, a

spatial max is taken over an 8 ×8 grid first and then across

the two scales (size 7 and 9). Note that we do not take a

max over different orientations, hence, each band (C1)Σ


contains 4 maps.


During training only: Extract K patches Pi=1,...K of 
various sizes ni × ni and all four orientations (thus 
containing ni × ni × 4 elements) at random from the 
(C1)Σ maps from all training images. 

S2: For each C1 image (C1)Σ, compute: 
Y = exp(−γ||X − Pi||2) for all image patches X (at all 
positions) and each patch P learned during training for 
each band independently. Obtain S2 maps (S2)Σ 

i . 

C2: Compute the max over all positions and scales for

each S2 map type (S2)i (i.e., corresponding to a particular

patch Pi) and obtain shift- and scale-invariant C2 features

(C2)i , for  i = 1  . . .K .


Figure 1. Computation of C2 features. 

in favor of the max operation has appeared [6, 9]. Again 
pooling parameters were set so that C1 units match the tun­
ing properties of complex cells as measured experimentally 
(see Table 1 and [19] for a full description of how those 
filters were obtained). 

Fig. 2 illustrates how pooling from S1 to C1 is done. S1 
units come in 16 scales s arranged in 8 bands Σ. For  in­
stance, consider the first band Σ = 1. For each orientation, 
it contains two S1 maps: one obtained using a filter of size 
7, and one obtained using a filter of size 9. Note that both of 
these S1 maps have the same dimensions. In order to obtain 
the C1 responses, these maps are sub-sampled using a grid 
cell of size NΣ × NΣ = 8  × 8. From each grid cell we 
obtain one measurement by taking the maximum of all 64 
elements. As a last stage we take a max over the two scales, 
by considering for each cell the maximum value from the 
two maps. This process is repeated independently for each 
of the four orientations and each scale band. 

In our new version of the standard model the subse­
quent S2 stage is where learning occurs. A large pool of K 
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Figure 2. Scale- and position-tolerance at the complex cells (C1) 
level: Each C1 unit receives inputs from S1 units at the same pre­
ferred orientation arranged in bands Σ, i.e., S1 units in two differ­
ent sizes and neighboring positions (grid cell of size NΣ × NΣ ). 
From each grid cell (left) we obtain one measurement by taking 
the max over all positions allowing the C1 unit to respond to an 
horizontal edge anywhere within the grid (tolerance to shift). Sim­
ilarly, by taking a max over the two sizes (right) the C1 unit be­
comes tolerant to slight changes in scale. 

patches of various sizes at random positions are extracted 
from a target set of images at the C1 level for all orienta­
tions, i.e., a patch Pi of size ni ×ni contains ni ×ni ×4 el­
ements, where the 4 factor corresponds to the four possible 
S1 and C1 orientations. In our simulations we used patches 
of size ni = 4, 8, 12 and 16 but in practice any size can 
be considered. The training process ends by setting each of 
those patches as prototypes or centers of the S2 units which 
behave as radial basis function (RBF) units during recog­
nition, i.e., each S2 unit response depends in a Gaussian-
like way on the Euclidean distance between a new input 
patch (at a particular location and scale) and the stored pro­
totype. This is consistent with well-known neuron response 
properties in primate inferotemporal cortex and seems to be 
the key property for learning to generalize in the visual and 
motor systems [15]. When a new input is presented, each 
stored S2 unit is convolved with the new (C1)Σ input im­
age at all scales (this leads to K × 8 (S2)Σ images, where i 
the K factor corresponds to the K patches extracted during 
learning and the 8 factor, to the 8 scale bands). After taking 
a final max for each (S2)i map across all scales and posi­
tions, we get the final set of K shift- and scale-invariant C2 
units. The size of our final C2 feature vector thus depends 
only on the number of patches extracted during learning and 
not on the input image size. This C2 feature vector is passed 
to a classifier for final analysis.1 

An important question for both neuroscience and com­
puter vision regards the choice of the unlabeled target set 
from which to learn – in an unsupervised way – this vocab­
ulary of visual features. In this paper, features are learned 
from the positive training set for each object category (but 
see [20] for a discussion on how features could be learned 
from random natural images). 

1It is likely that our (non-biological) final classifier could correspond 
to the task-specific circuits found in prefrontal cortex (PFC) and C2 units 
with neurons in inferotemporal (IT) cortex [16]. The S2 units could be 
located in V4 and/or in posterior inferotemporal (PIT) cortex. 



Datasets 

84.0 97.0 95.9 
84.8 99.7 99.8 
96.4 98.2 98.1 
94.0 96.7 94.9 
95.0 98.0 97.4 
90.4 95.9 95.3 
75.4 95.1 93.3 

Bench. C2 features 
boost SVM 

Leaves (Calt.) [24] 
Cars (Calt.) [4] 
Faces (Calt.) [4] 
Airplanes (Calt.) [4] 
Moto. (Calt.) [4] 
Faces (MIT) [7] 
Cars (MIT) [11] 

Figure 3. Examples from the MIT face and car datasets. 

3. Experimental Setup 

We tested our system on various object categorization 
tasks for comparison with benchmark computer vision sys­
tems. All datasets we used are made up of images that either 
contain or do not contain a single instance of the target ob­
ject; The system has to decide whether the target object is 
present or absent. 

MIT-CBCL datasets: These include a near-frontal 
(±30◦) face dataset for comparison with the component-
based system of Heisele et al. [7] and a multi-view car 
dataset for comparison with [11]. These two datasets are 
very challenging (see typical examples in Fig. 3). The face 
patterns used for testing constitute a subset of the CMU 
PIE database which contains a large variety of faces un­
der extreme illumination conditions (see [7]). The test non-
face patterns were selected by a low-resolution LDA clas­
sifier as the most similar to faces (the LDA classifier was 
trained on an independent 19 × 19 low-resolution training 
set). The full set used in [7] contains 6,900 positive and 
13,700 negative 70×70 images for training and 427 positive 
and 5,000 negative images for testing. The car database on 
the other hand was created by taking street scene pictures in 
the Boston city area. Numerous vehicles (including SUVs, 
trucks, buses, etc) photographed from different view-points 
were manually labeled from those images to form a positive 
set. Random image patterns at various scales that were not 
labeled as vehicles were extracted and used as the negative 
set. The car dataset used in [11] contains 4,000 positive and 
1,600 negative 120 × 120 training examples and 3,400 test 
examples (half positive, half negative). While we tested our 
system on the full test sets, we considered a random sub­
set of the positive and negative training sets containing only 
500 images each for both the face and the car database. 

The Caltech datasets: The Caltech datasets 
contain 101 objects plus a background category 
(used as the negative set) and are available at 
http://www.vision.caltech.edu. For each ob­
ject category, the system was trained with n = 1, 3, 6, 15, 30 
or 40 positive examples from the target object class (as 
in [3]) and 50 negative examples from the background 
class. From the remaining images, we extracted 50 images 
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Table 2. C2 features vs. other recognition systems (Bench.). 

from the positive and 50 images from the negative set to 
test the system’s performance. As in [3], the system’s 
performance was averaged over 10 random splits for each 
object category. All images were normalized to 140 pixels 
in height (width was rescaled accordingly so that the image 
aspect ratio was preserved) and converted to gray values 
before processing. These datasets contain the target object 
embedded in a large amount of clutter and the challenge is 
to learn from unsegmented images and discover the target 
object class automatically. For a close comparison with 
the system by Fergus et al. we also tested our approach 
on a subset of the 101-object dataset using the exact same 
split as in [4] (the results are reported in Table 2) and an 
additional leaf database as in [24] for a total of five datasets 
that we refer to as the Caltech datasets in the following. 

4 Results  

Table 2 contains a summary of the performnace of the 
C2 features when used as input to a linear SVM and to 
gentle Ada Boost (denoted boost) on various datasets. For 
both our system and the benchmarks, we report the error 
rate at the equilibrium point, i.e., the error rate at which 
the false positive rate equals the miss rate. Results ob­
tained with the C2 features are consistently higher than 
those previously reported on the Caltech datasets. Our sys­
tem seems to outperform the component-based system pre­
sented in [7] (also using SVM) on the MIT-CBCL face 
database as well as a fragment-based system implemented 
by [11] that uses template-based features with gentle Ada 
Boost (similar to [21]). 

Fig. 4 summarizes the system performance on the 101­
object database. On the left we show the results obtained 
using our system with gentle Ada Boost (we found qual­
itatively similar results with a linear SVM) over all 101 
categories for 1, 3, 6, 15, 30 and 40 positive training ex­
amples (each result is an average of 10 different random 
splits). Each plot is a single histogram of all 101 scores, ob­
tained using a fixed number of training examples (e.g., with 
40 examples the system gets 95% correct for 42% of the 
object categories). On the right we focus on some of the 
same object categories as the ones used by Fei-Fei et al. for 
illustration in [3]: the C2 features achieve error rates very 
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Figure 4. C2 features performance on the 101-object database for different numbers of positive training examples: (left) histogram across 
the 101 categories and (right) performance on sample categories, see accompanying text. 
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Figure 5. Superiority of the C2 vs. SIFT-based features on the Caltech datasets for different number of features (left) and on the 101-object 
database for different number of training examples(right). 

similar to the ones reported in [3] with very few training 
examples. 

We also compared our C2 features to SIFT-based fea­
tures [12]. We selected 1000 random reference key-points 
from the training set. Given a new image, we measured the 
minimum distance between all its key-points and the 1000 
reference key-points, thus obtaining a feature vector of size 
1000 (for this comparison we did not use the position in­
formation recovered by the algorithm). While Lowe recom­
mends using the ratio of the distances between the nearest 
and the second closest key-point as a similarity measure, 
we found that the minimum distance leads to better per­
formance than the ratio on these datasets. A comparison 
between the C2 features and the SIFT-based features (both 
passed to a Gentle Ada boost classifier) is shown in Fig. 5 
(left) for the Caltech datasets. The gain in performance ob­
tained by using the C2 features relative to the SIFT-based 
features is obvious. This is true with gentle Ada Boost – 
used for classification on Fig. 5 (left) – but we also found 
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very similar results with SVM. Also, as one can see in Fig. 5 
(right), the performance of the C2 features (error at equilib­
rium point) for each category from the 101-object database 
is well above that of the SIFT-based features for any number 
of training examples. 

Finally, we conducted initial experiments on the multiple 
classes case. For this task we used the 101-object dataset. 
We split each category into a training set of size 15 or 30 
and a test set containing the rest of the images. We used a 
simple multiple-class linear SVM as classifier. The SVM 
applied the all-pairs method for multiple label classifica­
tion, and was trained on 102 labels (101 categories plus the 
background category, i.e., 102 AFC). The number of C2 
features used in these experiments was 4075. We obtained 
above 35% correct classification rate when using 15 training 
examples per class averaged over 10 repetitions, and 42% 
correct classification rate when using 30 training examples 
(chance below 1%). 
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Shown are S2 features (centers of RBF units): each oriented ellipse characterizes a C1 (afferent) subunit at matching orientation, while 
color encodes for response strength. (right) Multiclass classification on 101 object database with a linear SVM. 

5 Discussion ogy is however unlikely to be able to use geometrical infor­
mation – at least in the cortical stream dedicated to shape 

This paper describes a new biologically-motivated processing and object recognition. The system described in 

framework for robust object recognition: Our system first this paper is respects the properties of cortical processing 

computes a set of scale- and translation-invariant C2 fea- (including the absence of geometrical information) while 

tures from a training set of images and then runs a standard showing performance at least comparable to the best com­

discriminative classifier on the vector of features obtained puter vision systems. 

from the input image. Our approach exhibits excellent per­
formance on a variety of image datasets and compete with 
some of the best existing systems. The fact that this biologically-motivated model outper-

This system belongs to a family of feedforward models forms more complex computer vision systems might at first 
of object recognition in cortex that have been shown to be appear puzzling. The architecture performs only two major 
able to duplicate the tuning properties of neurons in several kinds of computations (template matching and max pool-
visual cortical areas. In particular, Riesenhuber & Poggio ing) while some of the other systems we have discussed 
showed that such a class of models accounts quantitatively involve complex computations like the estimation of prob-
for the tuning properties of view-tuned units in inferotem- ability distributions [24, 4, 3] or the selection of facial­
poral cortex (tested with idealized object stimuli on uniform components for use by an SVM [7]. Perhaps part of the 
backgrounds), which respond to images of the learned ob- model’s strength comes from its built-in gradual shift- and 
ject more strongly than to distractor objects, despite signif- scale-tolerance that closely mimics visual cortical process­
icant changes in position and size [16]. The performance ing, which has been finely tuned by evolution over thou-
of this architecture on a variety of real-world object recog- sands of years. It is also very likely that such hierarchical 
nition tasks (presence of clutter and changes in appearance, architectures ease the recognition problem by decomposing 
illumination, etc) provides another compelling plausibility the task into several simpler ones at each layer. Finally it is 
proof for this class of models. worth pointing out that the set of C2 features that is passed 

While a long-time goal for computer vision has been to the final classifier is very redundant, probably more re-
to build a system that achieves human-level recognition dundant than for other approaches. While we showed that a 
performance, state-of-the-art algorithms have been diverg- relatively small number of features (about 50) is sufficient 
ing from biology: for instance, some of the best existing to achieve good error rates, performance can be increased 
systems use geometrical information about the constitu- significantly by adding many more features. Interestingly, 
tive parts of objects (constellation approaches rely on both the number of features needed to reach the ceiling (about 
appearance-based and shape-based models and component- 5,000 features) is much larger than the number used by cur-
based system use the relative position of the detected com- rent systems (on the order of 10-100 for [22, 7, 21] and 4-8 
ponents along with their associated detection values). Biol- for constellation approaches [24, 4, 3]). 
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