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Abstract 

Humans can recognize the gist of a novel image in a single glance, independent of its 
complexity. How is this remarkable feat accomplished? Based on behavioral and 
computational evidence, this paper describes a formal approach to the representation and 
the mechanism of scene gist understanding, based on scene-centered, rather than object-
centered primitives. We show that the structure of a scene image can be estimated by the 
mean of global image features, providing a statistical summary of the spatial layout 
properties (Spatial Envelope representation) of the scene. Global features are based on 
configurations of spatial scales and are estimated without invoking segmentation or 
grouping operations. The scene-centered approach is not an alternative to local image 
analysis but would serve as a feed-forward and parallel pathway of visual processing, able 
to quickly constrain local feature analysis and enhance object recognition in cluttered 
natural scenes.  
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Introduction 

One remarkable aspect of human visual perception is that we are able to understand the 
meaning of a complex novel scene very quickly even when the image is blurred (Schyns & 
Oliva, 1994), or presented for only 20 msec (Thorpe et al., 1996).  Mary Potter (1975, 1976, 
see also Potter et al., 2004) demonstrated that during a rapid presentation of a stream of 
images, observers were able to identify the semantic category of each image as well as a 
few objects and their attributes. This rapid understanding phenomenon can be experienced 
while looking at modern movie trailers which utilize many fast cuts between scenes: with a 
mere glimpse of each picture, you can identify each shot’s meaning, the actors and the 
emotion depicted in each scene (Maljkovic and Martini, 2005) even though you will not 
necessarily remember the details of the trailer. The amount of perceptual and semantic 
information that observers comprehend within a glance (about 200 msec) refers to the gist 
of the scene (for a review, Oliva, 2005). In this paper, we discuss two main questions 
related to rapid visual scene understanding: what visual information is perceived during the 
course of a glance, and which mechanisms could account for the efficiency of scene gist 
recognition. 

Figure 1: Illustration of the effect of a coarse layout (at a resolution of 8 cycles per image) on scene 
identification and object recognition. Despite the lack of local details in the left blurred scene, viewers are 
confident in describing the spatial layout of a street. However, the high resolution image reveals that the 
buildings are in fact furniture. This misinterpretation is not an error of the visual system. Instead, it illustrates 
the strength of the global spatial layout in constraining the identities of the local image structures (Navon, 
1977). 

Research in scene understanding has traditionally treated objects as the atoms of 
recognition. However, behavioral experiments on fast scene perception suggest an 
alternative view: that we do not need to perceive the objects in a scene to identify its 
semantic category. The semantic category of most real world scenes can be inferred from 
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their spatial layout (e.g. an arrangement of basic geometrical forms such as simple Geons 
clusters, Biederman, 1995; the spatial relationships between regions or blobs of particular 
size and aspect ratio, Oliva and Schyns, 2000; Sanocki & Epstein, 1997; Schyns & Oliva, 
1994). Figure 1 illustrates the importance of the spatial arrangement of regions for scene 
and object recognition. When looking at the image on the left, viewers describe the scene as 
a street with cars, buildings and the sky. Despite the fact that the local information available 
in the image is insufficient for reliable object recognition, viewers are confident and highly 
consistent in their descriptions. Indeed, the blurred scene has the spatial layout of a street. 
When the image is shown in high resolution, new details reveal that the image has been 
manipulated and that the buildings are in fact pieces of furniture. Almost 30% of the image 
pixels correspond to an indoor scene. The misinterpretation of the low-resolution image is 
not a defect of the visual system. Instead, it illustrates the strength of spatial layout 
information in constraining the identity of the objects in normal conditions, which is 
especially evident in degraded conditions in which object identities cannot be inferred based 
only on local information (Schyns and Oliva, 1994).  

In this paper, we examine what is the initial representation of a complex, real world scene 
image that allows for its rapid recognition.  According to the global precedent hypothesis 
advocated by Navon (1977) and validated in numerous studies since (for a review see 
Kimchi, 1992), the processing of the global structure and the spatial relationships between 
components, precede the analysis of local details. The global precedence effect is 
particularly strong for images constituted of many element patterns (Kimchi, 1998), as it is 
the case of most real world scene pictures. 

To clarify the terminology we will be using in this article, in the same way that “red” and 
“vertical” are local feature values of an object (Treisman & Gelade, 1980), a specific 
configuration of local features define a global feature value of a scene or an object. For 
instance, an image composed of vertical contours on the right side and horizontal contours 
on the left side could be estimated by one global feature receptive field tuned to respond to 
that specific “Horizontal -Vertical “ configuration. Global feature inputs are estimated by 
summations of local feature values but they have holistic properties of the scene as they 
encode the spatial relationships between components. Based on behavioral and 
computational experiments, we show the relevance of using a low dimensional code of the 
spatial layout of a scene, termed global image features, to represent the meaning of a scene. 
Global features capture the diagnostic structure of the image, giving an impoverished and 
coarse version of the principal contours and textures of the image that is still detailed 
enough to recognize the image’s gist. One of the principal advantages of the global image 
coding described here lies in its computational efficiency: there is no need to parse the 
image or group its components in order to represent the spatial configuration of the scene.  

In this paper, we examine (1) the possible content of the global structure of a natural 
scene image, based on experimental results from the scene recognition literature; (2) how 
the global scene structure can be modeled and (3) how the global features could participate 
to real world scene categorization. 
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1- The role of global image features on scene perception: experimental evidence 

Figure 2: -A- The two original images used to build the hybrid scenes shown above –B- A hybrid image 
combining the high spatial frequency (HSF, 24 cycles per image) of the beach and the low spatial frequency 
(LSF, 8 cycles per image) of the street scene. If you squint, blink, or defocus, the street scene should replace 
the beach scene (if this demonstration fails, step back from the image until your perception changes).  B) The 
complementary hybrid image, with the street scene in HSF and the beach scene in LSF (cf. Oliva and Schyns, 
1997; Schyns and Oliva, 1994).  

There is considerable evidence visual input is processed at different spatial scales (from 
low to high spatial frequency), and psychophysical and computational studies have shown 
that different spatial scales offer different qualities of information for recognition purpose. 
On the one hand, the shape of an object is more precisely defined at high spatial frequencies 
but the object boundaries are interleaved by considerable noise, which requires extensive 
processing to be filtered out (among others, Marr and Hildreth, 1980; Shashua and Ullman, 
1988). On the other hand, low scale resolution is more contrasted and might be privileged in 
terms of temporal processing than finer scale (Navon, 1977; Sugase, 1999), but this 
perceptual advantage might be offset by higher uncertainty about the identity of the blobs. 

In a series of behavioral experiments, Oliva and Schyns evaluated the role that different 
spatial frequencies play in fast scene recognition. They created a novel kind of stimuli, 
termed hybrid images (see Figure 2), by superimposing two images at two different spatial 
scales: the low-spatial scale is obtained by filtering one image with a low-pass filter 
(keeping spatial frequencies up to 8 cycles/image), the high spatial scale is obtained by 
filtering a second image with a high-pass filter (frequencies above 24 cycles/image). The 
final hybrid image is composed by adding these two different filtered images (the filters are 
designed in such a way that there is no overlapping between the two images in the 
frequency domain).  The examples in figure 2 show hybrid images combining a beach scene 
and a street scene. 
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The experimental results using hybrid stimuli showed that for short presentation time (30 
ms, followed by a mask, Schyns & Oliva, 1994), observers used the low spatial frequency 
part of hybrids (street in figure 2B) when solving a scene recognition task, whereas for 
longer (150 ms) durations of the same image, observers categorized the image based on the 
high spatial frequencies (e.g. beach in figure 2B). In both cases, participants were unaware 
that the stimuli had two interpretations. It is important to stress that this result is not a 
evidence for a preference of the low-spatial frequencies in the early stages of visual 
processing: additional experiments (Oliva and Schyns, 1997; Schyns and Oliva, 1999) 
showed that, in fact, the visual system can select which spatial scale to process depending 
on task constraints (e.g., if the task is determining the type of emotion of a face, participants 
will preferentially select the low spatial frequencies, but when the task is determining the 
gender of the same set of faces, participants used either low, either high spatial frequencies). 
Furthermore, priming studies showed that within a 30 msec exposure, both low and high 
spatial frequency bands from a hybrid image were registered by the visual system 1 (Oliva 
& Schyns, 1997, Exp.1; Parker et al., 1992, 1996) but that the requirements of the task 
determined which scale, coarse or fine, was preferentially selected for covert processing. 
This suggests that the full range of spatial frequency scales is available with only 30 msec 
of image exposure, although the resolution at which the local features are analyzed and pre-
attentively combined, when embedded in cluttered natural images, is unknown.  

However, hybrid images break one important statistical property of real-world natural 
images, i.e., the spatial scale contiguity. To the contrary of hybrid images, contours of a 
natural image are correlated across scale space: a contour existing at low spatial frequency 
exists also at high spatial frequency. Moreover, statistical analysis of the distributions of 
orientations in natural images has shown that adjacent contours tend to have similar 
orientations whereas segments of the same contour that are further apart tend to have more 
disparate orientations (Geisler et al., 2001). The visual system could take advantage of 
spatial and spectral contiguities of contours to rapidly construct a sketch of the image 
structure. Boundary edges that would persist across the scale space are likely to be 
important structures of the image (Linderberg, 1993), and would define an initial skeleton 
of the image, fleshed out later by finer structures existing at higher spatial frequency scales 
(Linderberg, 1993; Watt, 1987; Yu, 2005). Most of the contours in natural scenes need 
selective attention to be bound together to form a shape of  higher complexity (Treisman 
and Gelade, 1980; Wolfe and Bennet, 1997; Wolfe et al., 2002), but contours persistent 
through the scale space might need fewer attentional (or computational) resources to be 
represented early on. Therefore, one cannot dismiss the possibility that the analysis of fine 
contours and texture characteristics could be performed at the very early stage of scene 
perception, either because low spatial frequency luminance boundaries bootstrap the 
perceptual organization of finer contours (Lindeberg, 1993), or because the sparse detection 
of a few contours is sufficient to predict the orientation of the neighborhood edges (Geisler 

1 A hybrid scene presented for 30 ms and then masked would prime the recognition of a subsequent related 
scene,matching either the low or the high spatial scale of the hybrid (Oliva and Schyns, 1997, Exp. 1). 
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et al., 2001), or because selective attention was attending to information at a finer scale 
(Oliva & Schyns, 1997). 

Within this framework, the analysis of visual information for fast scene understanding 
proceeds in a global to local manner (Navon, 1977; Treisman and Gelade, 1980), but not 
necessarily from low to high spatial frequencies. In other words, when we say “global and 
local” we do not mean “low and high” spatial frequencies. All spatial frequencies contribute 
to an early global analysis of the scene layout information, but organized at a rather coarse 
layout. Fine image edges, like long contours, are available, but their spatial organization is 
not encoded in a precise way. In the rest of this section we discuss some of the possible 
mechanisms used for performing the global analysis of the scene. 

A simple and reliable global image feature for scene recognition is obtained by encoding 
the organization of color blobs in the image (under this representation a view of a landscape 
corresponds to a blue blob on the top, a green blob on the bottom and a brownish blob in the 
center. e.g., Carson et al., 2002; Lipson et al., 1997; Oliva & Schyns, 2000). Despite the 
simplicity of such a representation, it is remarkable to note the reliability of scene 
recognition achieved by human observers when shown a very low-resolution scene picture. 
Human observers are able to identify most of real world scene categories based on a 
resolution as low as 4 cycles/images, but only when the blurred image is in color. If the 
images are presented in gray levels performance drop and participants need to see higher 
resolution images before achieving the same recognition performance: the same 
performance than a with a color image with 4 cycles/image  is achieved at a resolution of 8 
cycles/image for a gray scale image (Oliva & Schyns, 2000, Exp. 3).  

However, color blobs are not equally important for all the scenes. The diagnosticity of 
colored surfaces in an image seems to be a key element of fast scene recognition (Goffaux 
et al., 2005; Oliva & Schyns, 2000). In order to study the importance of color information, 
color images were altered by transforming their colors modes (e.g red surfaces became 
green, yellow surfaces became blue). This provides a way of understanding if color is 
helping as a grouping cue (and therefore the specific color is not important) or if it is 
diagnostic for the recognition (the color is specific to the category). For presentation time as 
short as 30 msec, Oliva & Schyns (2000) observed that altering colors impaired scene 
recognition when color was a diagnostic feature of the scene category  (e.g. forests are 
greenish, coasts are bluish) but it had no detrimental effect for the recognition of scenes for 
which color was no diagnostic (e.g., some categories of urban scenes). The naming of a 
colored scene, relative to a grey scale scene image, was faster if it belonged to a category 
from which the colors distributions did not vary greatly across exemplars (for natural scenes 
like forest, coast, canyons), than for scene categories where color distribution varied (for 
indoors scenes, urban environments, see also Rousselet et al., 2005). Colored surfaces, in 
addition to providing useful segmentation cues for parsing the image (Carson et al., 2003), 
also informs about semantic properties of a place, such as its probable temperature (Greene 
& Oliva, 2005). The neural correlates of the role of color layout has been recently 
investigated by Goffaux et al (2005), who have observed an ERP frontal signal 150 msec 
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after image onset (a well documented temporal marker of image categorization, Thorpe et 
al., 1996; Van Rullen & Thorpe, 2001), when observers identified normally colored scene 
pictures (e.g., a green forest, a red canyon) compared to their grayscale or abnormally 
colored version (e.g., a purple forest, a bluish canyon). In a similar vein, Steeves et al. 
(2004) have shown that an individual with a profound visual form agnosia (i.e., incapable of 
recognizing objects based on their shape) could still identify scene pictures from colors and 
texture information only. Their fMRI study revealed higher activity in the parahippocampal 
place area (Epstein & Kanwisher, 1997) when the agnostic patient was viewing normally 
colored scenes pictures than when she was viewing black and white pictures.  

In addition to color, research has shown that the configuration of contours is also a key 
diagnostic cue of scene categories (Baddeley, 1997; McCotter et al., 2005; Oliva & 
Torralba, 2001; Torralba & Oliva, 2003) and can help to predict the presence or absence of 
objects in natural images (Torralba, 2003a; Torralba & Oliva, 2003). Basic-level classes of 
environmental scenes (forest, street, highway, coast, etc.) as well as global properties of the 
3D space (e.g. in perspective, cluttered) can be determined with a high probability, from a 
diagnostic set of low level image features (Fei Fei & Perona, 2005; Oliva & Torralba, 2001; 
Walker Renninger & Malik, 2004). For instance in urban environments, an estimation of the 
volume that a scene subtends is well predicted by the layout of oriented contours and 
texture properties.  As the volume of scene space increases, the perceived image on the 
retina changes from large surfaces to smaller pieces, increasing the high spatial frequency 
content (Torralba & Oliva, 2002). A different pattern is observed when looking at a natural 
scene: with increasing distance from the observer, natural surfaces becomes larger and 
smoother, so for a given region in the image, the texture becomes coarser. 

In the following section, we suggest an operational definition of global image features. 
The global features proposed encode a coarse representation of the organization of low and 
high spatial frequencies in the image. 

2- Building a scene representation from global image features 

High-level properties of a scene such as the degree of perspective or the mean depth of 
the space that the scene subtends have been found to be correlated with the configuration of 
low-level image features (Torralba & Oliva, 2002, 2003). Evidence from the psychophysics 
literature suggest that our visual system analyzes global statistical summary of the image in 
a pre-selective stage of visual processing or at least, with minimal attentional resources 
(mean orientation, Parkes et al., 2001; mean of set of objects, Ariely, 2001; Chong and 
Treisman, 2003). By pooling together the activity of local low-level feature detectors across 
large regions of the visual field, we can build a holistic and low-dimensional representation 
of the structure of a scene that does not require explicit segmentation of image regions and 
objects (as in Oliva & Torralba, 2001) and therefore, require very low computational (or 
attentional) ressources. This suggests that a reliable scene representation can be built, in a 
feed-forward manner, from the same low-level features used for local neural representations 
of an image (receptive fields of early visual areas, Hubel & Wiesel, 1968).   
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Figure 3: Illustration of a local receptive field and a global receptive field (RF). A local RF is tuned to a 
specific orientation and spatial scale, at a particular position in the image. A global RF is tuned to a spatial 
pattern of orientations and scales across the entire image. A global RF can be generated as a combination of 
local RFs and can, in theory, be implemented from a population of local RFs like the ones found in the early 
visual areas. Larger RFs, which can be selective to global scene properties, could be found in higher cortical 
areas (V4 or IT). The global feature illustrated in this figure is tuned to images with vertical structures at the 
top part and horizontal component at the bottom part, and will reply strongly to the scene street image. 

For instance, in a forest scene picture, the shape of a leaf can be estimated by a set of 
local receptive fields (encoding oriented edges). The shape of the whole forest picture can 
be summarized by the configuration of many small oriented contours, distributed 
everywhere in the image. In the case of the forest scene, a global features encoding "fine­
grained texture everywhere in the image" will provide a good summary of the texture 
qualities found in the image. In the case of a street scene, we will need a variety of global 
features encoding the perspective, the level of clutter, etc. Figure 3 illustrates a global 
receptive field which would respond maximally to scenes with vertical structures at the top 
part and horizontal components at the bottom part (as in the case of a street scene).  

Given the variability of layout and feature distribution in the visual world, and given the 
variability of viewpoints that an observer can have on any given scene, most real world 
scene structures will need to be estimated not only by one, but by a collection of global 
features. The number of global features that can be computed is quite high. The most 
effective global features will be those that reflect the global structures of the visual world. 
Several methods of image analysis can be used to learn a suitable basis of global features 
(Fei Fei & Perona, 2005; Oliva & Torralba, 2001; Vailaya et al., 1998; Vogel et al, 2004) 
which capture the statistical regularities of natural scene images. In the modeling presented 
here, we only consider global features of receptive fields measuring orientations and spatial 
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frequencies of image components that have a spatial resolution between 1 and 8 
cycles/image (see Figure 5). We employed a basis derived by principal component analysis 
perform on a database of thousands of real-world images. 

We summarize here the steps performed for learning a set of global features 
corresponding to the statistical configuration of orientation and spatial frequencies existing 
in the real world.  Each global feature value is a weighted combination of the output 
magnitude of a bank of multiscale oriented filters. In order to set the weights, we use 
principal components analysis (PCA).  Due to the high-dimensionality of images, applying 
PCA directly to the vector composed by the concatenation of the output magnitudes of all 
the filters will be very computationally expensive. Several regularization techniques can be 
used. Here, we decided to reduce the dimensionality of the vector of features by first 
downsampling each filter output to a size NxN (with N ranging from 2 to 16 in the 
computation performed here). All the filter outputs were downsampled to the same image 
size, independently of the scale of the filter. As a result, each image was represented by a 
vector of NxNxK values (K is the number of different orientation and scales, and NxN is 
the number of samples used to encode, in low-resolution, the output magnitude of each 
filter). This gives, for each image, a vector with a relatively small dimensionality (few 
hundreds of elements). The dimensionality of this vector space is then reduced by applying 
PCA to a collection of 22000 images (the image collection includes scenes at all ranges of 
views, from close-up to panoramic, for both man-made and natural environments, similar to 
Oliva & Torralba, 2001). 

Figure 4.  The Principal components of natural image statistics define the weights used to compute the global 
features. The set of weights are obtained by applying principal component analysis (PCA) to the responses of 
multiscale oriented filters to a large collection of natural images. The top row shows the 2nd to the 8th 
principal components for a spatial resolution of 2 cycles/image (4 x 4 regions). The first component behaves 
as a global average of the output of all orientations and scales and therefore it is not shown. The bottom row 
shows the PCs for a resolution of 4 cycles/image (8 x 8 regions). For each PC, each subimage shows, in a 
polar plot (low spatial frequencies are in the center of the plot), how the spatial scale and orientations are 
weighted at each spatial location. The white corresponds to positive value and the black to negative value. 
Here we refer to the PCs as global feature templates. 
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Figure 4 shows the first principal components of the output magnitude of multiscale 
oriented filters for the luminance channel for a spatial resolution of 2 and 4 cycles per image 
(this resolution refers to the resolution at which the magnitude of each filter output is 
reduced before applying the PCA. 4 cycles/image corresponds to averaging the output of 
each filter over NxN=8x8 non-overlapping windows, and 2 cycles/image corresponds to 
NxN = 4x4). Each principal component defines the weights used to compute each global 
feature. At each spatial location on the image, the polar plot shows the weighing of the 
spatial frequency at each orientation, with the lowest spatial frequencies in the center and 
the highest spatial frequencies along the maximum radius. In the following, we will refer to 
this visualization of the principal component weights (shown in figure 4) as a global feature 
template. In Figure 4, the first template responds positively for images with more texture 
(seen in the mid and high frequency range) in the bottom half than in the upper half of the 
image and responds negatively for images with more texture in the upper half than in the 
bottom (e.g. a landscape with trees in the background, with no view of the sky and snow on 
the ground). Beyond the first component, the global feature templates increase in 
complexity and cannot be easily described.  Note that principal components are used here as 
an illustration of an orthogonal basis for generating global features, but they are not the only 
possibility. For instance, other bases could be obtained by applying independent component 
analysis (Bell and Sejnowski, 1997) or searching for sparse codes (Olshausen and Field, 
1997). 

Figure 5. This figure illustrates the information preserved by the global features for two images. Fig. b) shows, 
on a polar plot, the average of the output magnitude of the multiscale oriented filters. Each average is 
computed locally by splitting the image into 4x4 non-overlapping windows. Fig. c) shows the coefficients 
(global features) obtained by projecting the averaged output filters into the first 20 principal components. In 
order to illustrate the amount of information preserved by this representation, Fig. d) shows noise images that 
are coerced to have the same color blobs and the same global features (N=100) than the target image. The very 
low frequency components (colored blobs) of the synthetic images are the same as from the original image. 
The high-spatial frequencies are obtained by adding noise with the constraint that the resulting image should 
have the same global features than the target image (this only affects the luminance channel). This constraint 
is imposed by an iterative algorithm. The algorithm starts from white noise. At each iteration, the noise is 
decomposed using the bank of multiscale oriented filters and the magnitude output of the filters is modified to 
match the global features of the target image. From left to right, the spatial resolution (number of windows 
used to average the filter outputs and the resolution of the color blobs) increases from 2x2, 4x4, 8x8, and 
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16x16. Note that despite the fact that the 2x2 image provides a poor reconstruction of the detailed structure of 
the original image, the texture contained in this representation is still relevant for scene categorization (e.g. 
open, closed, indoor, outdoor, natural or urban scenes). 

Figure 5c shows the values of the 20 first global features (according to the ordering of 
principal components) for coding the structure of the street and the mountain scene. By 
varying the spatial resolution of the global features, we can manipulate the degree to which 
local features will be appropriately localized in the image. In order to illustrate the amount 
of information preserved by a set of global features at various resolution, Figure 5d shows 
noise images that are coerced to have the same color blobs (here the color information is 
added by projecting the image into the principal components of the color channels, and 
retaining only the first 32 coefficients) and the same global features (N=100) as the street 
and the mountain scenes. The global feature scene representation looks like a sketch version 
of the scene in which most of the contours and spatial frequencies from the original image 
have been conserved, but their spatial organization is only loosely preserved: a sketch at a 
resolution of 1 cycle/image (pulling local features from a 2 x 2 grid applied on image) is not 
informative of the spatial configuration of the image, but keeps the texture characteristics of 
the original scene so that we could probably decide whether the scene is a natural or man-
made environment (Oliva & Torralba, 2001). For higher resolution, we can define the 
layout of the image and identify regions with different texture qualities, and recognize the 
probable semantic category of the scene (Oliva and Torralba, 2001, 2002).   

3- Building the gist of the scene from global features: the Spatial Envelope model 

How can we infer the semantic gist of a scene from the representation generated by the 
global image features? The gist refers to the meaningful information that an observer can 
identify from a glimpse at a scene (Oliva, 2005; Potter, 1975). The gist description usually 
includes the semantic label of the scene (e.g. a kitchen), a few objects and their surface 
characteristics (Rensink, 2000), as well as the spatial layout (e.g. the volume the scene 
subtends, its level of clutter, perspective) and the semantic properties related to the function 
of the scene. Therefore, a model of scene gist should go beyond representing the principal 
contours or objects of the image or classifying an image into a category: it should include a 
description of semantic information that human observers comprehend and infer about the 
scene (Oliva, 2005). 

In Oliva and Torralba (2001), we introduced a holistic approach to scene recognition 
permitting to categorize the scene in its superordinate (e.g. urban, natural scene) and basic 
level categories (e.g. street, mountain), but also describing its spatial layout in a meaningful 
way. There are many interesting properties of a real world scene that can be defined 
independently of the objects. For instance, a forest scene can be described in terms of the 
degree of roughness and homogeneity of its textural components. These properties are in 
fact meaningful to a human observer who may use them for comparing similarities between 
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two forest images (cf. Heaps and Hendel, 1999; Rao and Lohse, 1993 for a similar account 
in the domain of textures). 

Because a scene is inherently a three dimensional entity, Oliva & Torralba (2001) 
proposed that fast scene recognition mechanisms might initially be based on global 
properties diagnostic of the space that the scene subtends and not necessarily the objects 
that the scene contains. A variety of spatial properties like “openness” or “perspective” 
(e.g., a coast is an "open" environment) have indeed a direct transposition into global 
features of two-dimensional surfaces (e.g., a coast has a long horizon line). This permits to 
evaluate the degree of openness or mean depth of an image by measuring the distribution of 
local image features (Torralba & Oliva, 2002, 2003).  To determine a vocabulary of spatial 
layout properties useful for scene recognition, we asked observers to describe real world 
scene images according to spatial layout and global appearance characteristics. The 
vocabulary given by observers (naturalness, openness, expansion, depth, roughness, 
complexity, ruggedness, symmetry) served to establish an initial scene-centered description 
of the image (based on spatial layout properties, Oliva and Torralba, 2002) offering an 
alternative to object-centered description (where a scene is identified from labeling the 
objects or regions, Barnard and Forsyth, 2001; Carson et al., 2002). Similar to the 
vocabulary used in architecture to portray the spatial properties of a place, we proposed to 
term the scene-centered description the Spatial Envelope of a scene. 

Figure 6: Schematic representation of the Spatial Envelope model as in Oliva and Torralba (2001). A- Spatial 
envelope properties can be classified into properties of boundaries and properties of content. For simplicity, 
only four properties are represented. B- Illustration of a scene as a single surface, with different “roughness” 
qualities. The spatial envelope does not explicitly represent objects; therefore “roughness” refers to the surface 
quality of the whole scene. C- Projection of ~1,200 pictures of typical urban scenes onto three spatial envelope 
axes (openness, roughness, expansion) as in Oliva & Torralba (2001). Semantic categories emerge, showing 
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that the spatial envelope representation carries information about the semantic class of a scene. D- Illustration 
of an implementation of the Spatial Envelope model in the form of “scene filters” applied onto the image. A 
complex “scene filter” can be computed as a linear combination of Gabor-like filters, and as a combination of 
global feature templates. Features of openness are shown in black and features of closedness are shown in 
white.  

Figure 6 illustrates the framework of the Spatial Envelope model (details can be found in 
Oliva & Torralba, 2001). For simplicity, the Spatial Envelope model is presented here as a 
combination of four global scene properties (Fig. 6A). Object identities are not represented 
in the model. Within this framework, the structure of a scene is characterized by the 
properties of the boundaries of the space (e.g. the size of the space, its degree of openness 
and perspective) and the properties of its content (e.g. the style of the surface, natural or 
man-made, the roughness of these surfaces). Any scene image can be described by the 
values it takes along each spatial envelope property. For instance, to describe the degree of 
openness of a given environment, we could refer to a “panoramic”, “open”, “closed” or 
“enclosed” scene.  A forest would be described as “an enclosed environment, with a dense 
isotropic texture” and a street scene would be a “man-man outdoor scene, with perspective, 
and medium level of clutter” (Oliva & Torralba, 2001, 2002).  This level of description is 
meaningful to observers who can infer the probable semantic category of the scene, by 
providing a conceptual summary of the gist of the scene. 

Computational modeling demonstrated that each spatial envelope property (naturalness, 
openness, expansion, etc.) could be estimated from a collection of global features templates 
(Figure 4) measuring each how natural, open, expanded, rough, the scene image is (Oliva 
and Torralba, 2001). The principal structure of a scene image is initially represented by a 
combination of global features, on the basis of which the spatial envelope properties can be 
estimated: each scene is described as a vector of meaningful values indicating the image’s 
degree of naturalness, openness, roughness, expansion, mean depth, etc. This description 
refers to the spatial envelope representation of the scene image. Therefore, if spatial 
envelope properties capture the diagnostic structure of a scene, two images with similar 
spatial envelopes should also belong to the same scene semantic categories. Indeed, Oliva & 
Torralba observed that scenes images judged by observers to have the same categorical 
membership (street, highway, forest, coastline, etc.) were projected close together in a 
multi-dimensional space whose axes correspond to the Spatial Envelope dimensions (Fig. 
6c). Neighborhood images in the spatial envelope space corresponded to images with 
similar spatial layout and similar conceptual description (cf. Figure 7 for exemplars of 
scenes and their nearest neighbors in a spatial envelope space of urban environments. Note 
that the spatial envelope properties (e.g. openness, naturalness, expansion, symmetry) are 
implemented here as a weighted combination of global features, but spatial envelope 
properties could also be derived from other basis of low or intermediate level features 
(Ullman et al., 2002). By providing semantic classification at both super-ordinate (e.g. open, 
natural scene) and basic levels (e.g. beach, forest) of description, the Spatial Envelope 
model provides a theoretical and computational framework for the representation of a 
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meaningful global scene structure, and a step towards understanding the representation and 
mechanisms of the gist of a scene. 

Figure 7: Examples of urban scenes sharing the same spatial envelope representation (for a resolution of 
global features of 2 c/i). Similar scenes were retrieved as the nearest neighbors of the first image of each row, 
in a 5 dimensional spatial envelope representation (naturalness, openness, mean depth, expansion and 
roughness). On the left, the scenes on each row pertain clearly to the same semantic category. On the right, the 
spatial envelope similarities are less representative of basic level categories per se, however the global 
structure of the image (coarse layout organization and levels of details) is very similar. There are other 
important global scene properties that are not shown here (for instance, visual complexity is not represented 
here, Oliva et al, 2004) and color is not taken into account neither. 

Conclusion 

Research over the last decade has made substantial progress toward understanding the 
brain mechanisms underlying human object recognition (Grill-Spector and Malach, 2004; 
Kanwisher, 2003) and its modeling (Reisenhuber and Poggio, 1999; Serre et al. 2005; 
Torralba et al., 2004; Ullman et al., 2002). Converging evidence from behavioral, imaging 
and computational studies suggest that, at least in early stages of processing, mechanisms 
involved in natural scene recognition may be independent from those involved in 
recognizing objects (Fei Fei & Perona, 2004; Li et al., 2002; Marois et al., 2004; McCotter 
et al., 2005; Oliva & Torralba, 2001; Schyns & Oliva, 1994). Based on a review of 
behavioral and computational work, we argue that fast scene recognition does not need to 
be built on top of the processing of objects, but can be analyzed in parallel by scene-
centered mechanisms. In our framework, a scene image is initially processed as a single 
entity and local information about objects and parts comes into play at a later stage of visual 
processing. We propose a formal basis of global features permitting to estimate quickly and 
in a feedforward manner, a meaningful representation of the scene structure.  Global image 
feature values provide a summary of the layout of real world images that may precede and 
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constrain the analysis of features of higher complexity. Based on a global spatial 
representation of the image, the Spatial Envelope model (Oliva and Torralba, 2001) 
provides a conceptual framework for the representation and the mechanisms of fast scene 
gist interpretation. Global image features and the spatial envelope representation are not 
meant to be an alternative to local image analysis but serve as a parallel pathway that can, 
on the one hand, quickly constrain local analysis, narrowing down the search for object in 
cluttered, real world scenes (global contextual priming, Torralba 2003a) and, on the other 
hand, provide a formal instance of a feed-forward mechanism for scene context evaluation, 
for the guidance of attention and eye movements in the scene (Oliva et al., 2003; Torralba et 
al., submitted; Torralba, 2003a,b). 

Evidence in favor of distinct neural mechanisms supporting scene and object recognition, 
at least at an earlier stage of visual processing, comes from the pioneer work of Epstein and 
Kanwisher (1998). They found a region of cortex referred as the parahippocampal place 
area (PPA) that responds more strongly to pictures of intact scenes (indoors, outdoors, 
close-up views), than to objects alone (Epstein et al., 2000). Furthermore, the PPA seems to 
be sensitive to holistic properties of the scene layout, but not to its complexity in terms of 
quantity of objects (Epstein and Kanwisher, 1998). The neural independence between 
scenes and object recognition mechanisms was recently strengthened by Goh and 
collaborators (2004). They observed activation of different parahippocampal regions when 
pictures of scenes were processed alone compared to pictures containing a prominent 
object, consistent within that scene. In a related vein, Bar (2004; Bar and Aminoff, 2003) 
found specific cortical regions (a network relating regions in the parahippocampal region 
and the retrosplenial cortex) involved in the analysis of the context of objects. The neural 
underpinnings of the global features, the spatial envelope properties or the gist of a scene, 
remain open issues: the global features are originally built as combinations of local low-
level filters of the type found in early visual areas. Lateral and/or feedback connections 
could combine this information locally to be read out by higher visual areas. Receptive 
fields in the inferior temporal cortex and parahippocampal region cover most of the useful 
visual field (20-40 degrees) thus are also capable, in theory, of encoding scene layout 
information like the global features and the spatial envelope properties. Clearly, the 
mechanisms by which scene understanding occurs in the brain remain to be found.  
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