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Abstract


Visual input is processed in parallel in the early stages of the visual system. Later, object 


recognition processes are also massively parallel, matching a visual object with a vast array of


stored representation. A tight bottleneck in processing lies between these stages. It permits only 


one or a few visual objects at any one time to be submitted for recognition. That bottleneck limits 


performance on visual search tasks when an observer looks for one object in a field containing 


distracting objects. Guided Search is a model of the workings of that bottleneck. It proposes that 


a limited set of attributes, derived from early vision, can be used to guide the selection of visual 


objects. The bottleneck and recognition processes are modeled using an asynchronous version of 


a diffusion process. The current version (Guided Search 4.0) captures a wide range of empirical 


findings. 
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Introduction 

Guided Search (GS) is a model of human visual search performance; specifically, of search tasks 

in which an observer looks for a target object among some number of distracting items. 

Classically, models have described two mechanisms of search: “serial” and “parallel” (Egeth, 

1966). In serial search attention is directed to one item at a time allowing each item to be 

classified as a target or a distractor in turn (Sternberg, 1966). Parallel models propose that all (or 

many) items are processed at the same time. A decision about target presence is based on the 

output of this processing (Neisser, 1963). GS evolved out of the 2-stage architecture of models 

like Treisman’s Feature Integration Theory (FIT Treisman & Gelade, 1980). FIT proposed a 

parallel, preattentive first stage and a serial, second stage controlled by visual selective attention. 

Search tasks could be divided into those performed by the first stage in parallel and those 

requiring serial processing. Much of the data comes from experiments measuring reaction time 

(RT) as a function of set size. The RT is the time required to respond that a target is present or 

absent. Treisman proposed that there was a limited set of attributes (e.g. color, size, motion) that 

could be processed in parallel, across the whole visual field (Treisman, 1985; Treisman, 

1986;Treisman & Gormican, 1988). These produced RTs that were essentially independent of 

the set size. Thus, slopes of RT x set size functions were near zero.  

In FIT, targets defined by two or more attributes required the serial deployment of attention. The 

critical difference between preattentive search tasks and serial tasks was that the serial tasks 

required a serial “binding” step (Treisman, 1996; von der Malsburg, 1981). One piece of brain 

might analyze the color of an object. Another might analyze its orientation. Binding is the act of 

linking those bits of information into a single representation of an object – an object file 
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(Kahneman, Treisman, & Gibbs, 1992). Tasks requiring serial deployment of attention from one 

item to the next produce RT x set size functions with slopes markedly greater than zero 

(typically, about 20-30 msec/item for target-present trials and a bit more than twice that for 

target-absent). 

The original GS model had a preattentive stage and an attentive stage, much like FIT. The core 

of GS was the claim that information from the first stage could be used to guide deployments of 

selective attention in the second (Cave & Wolfe, 1990; Wolfe et al., 1989). Thus, if observers 

searched for a red letter “T” among distracting red and black letters, preattentive color processes 

could guide the deployment of attention to red letters, even if no front-end process could 

distinguish a “T” from an “L” (Egeth et al., 1984). This first version of GS (GS1) argued that all 

search tasks required that attention be directed to the target item. The differences in task 

performance depended on the differences in the quality of guidance. In a simple feature search 

(e.g., a search for red among green), attention would be directed toward the red target before it 

was deployed to any distractors, regardless of the set size. This would produce RTs that were 

independent of set size. In contrast, there are other tasks where no preattentive information, 

beyond information about the presence of items in the field, is useful in guiding attention. In 

these tasks, as noted, search is inefficient. RTs increase with set size at a rate of 20-30 msec/item 

on target present trials and a bit more than twice that on the target absent trials (Wolfe, 1998). 

Examples include searching for a 2 among mirror-reversed 2s (5s) or searching for rotated Ts 

among rotated Ls. GS1 argued that the target is found when it is sampled, at random, from the 

set of all items.   
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Tasks where guidance is possible (e.g., search for conjunctions of basic features) tend to have 

intermediate slopes (Nakayama & Silverman, 1986; Quinlan & Humphreys, 1987; Treisman & 

Sato, 1990; Zohary, Hochstein, & Hillman, 1988). In GS1, this was modeled as a bias in the 

sampling of items so that, because it had the correct features, the target was likely to be picked 

earlier than it would have been by random sampling, but later than it would have been if it were 

the only item with those features. 

GS has gone through major revisions yielding GS2 (Wolfe, 1994) and GS3 (Wolfe & Gancarz, 

1996). GS2 was an elaboration on GS1 seeking to explain new phenomena and to provide an 

account for the termination of search on target-absent trials. GS3 was an attempt to integrate the 

covert deployments of visual attention with overt deployments of the eyes. This paper describes 

the current state of the next revision, uncreatively dubbed Guided Search 4.0 (GS4). The model 

is not in its final state because several problems remain to be resolved.  

What does Guided Search 4.0 seek to explain? 

GS4 is a model of simple search tasks done in the laboratory with the hope that the same 

principles will scale-up to the natural and artificial search tasks that are performed continuously 

by people outside of the laboratory. A set of phenomena is described here. Each pair of figures 

illustrates an aspect of the data that that any comprehensive model of visual search should strive 

to account for.  The left-hand member of the pair is the easier search in each case. 
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A.    Set size:  All else being 
equal, it will be harder and will 
take longer to find a target (a “T” 
in this example) among a greater 
number of distractors than lesser. 
(Palmer, 1995). 

B. Presence/Absence: Under 
most circumstances, it will take 
longer on average to determine 
that targets (again “T”) are absent 
than to determine that they are 
present. (Chun & Wolfe, 1996). 

C. Features and target­
distractor similarity: There are a 
limited set of basic attributes that 
support very efficient search 
(Wolfe & Horowitz, 2004). The 
larger the difference between 
target (here, a large disk) and 
distractors, the more efficient the 
search (Duncan & Humphreys, 
1989). 

D. Distractor heterogeneity: 
The more heterogeneous the 
distractors, the harder the search  
(Duncan & Humphreys, 1989). 
Note that this is true in this 
example, even though the 
heterogeneous distractors are less 
similar to the target (line tilted to 
the right) than the homogeneous. 
(Rosenholtz, 2001) 
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E. Flanking / Linear 
separability: For the same target 
- distractor distances, search is 
harder when distractors flank the 
target. In this case, 0 deg among 
+15 and -30 is harder than 0 vs 
+15 & +30. See linear 
separability in the 2D color plane 
(Bauer, Jolicœur, & Cowan, 
1996). 

F. Search asymmetry: Search 
for A among B is often different 
than search for B among A. Here 
0 among -15 deg is harder than ­
15 among 0 (Rosenholtz, 2001; 
Treisman & Souther, 1985; 
Wolfe, 2001) 

G. Categorical processing: All 
else being equal, targets are easier 
to find if they are categorically 
unique. On the left, the "steep" 
target is easier to find than the 
"steepest" target on the right. The 
geometric relationships are 
constant. (Wolfe, Friedman-Hill, 
Stewart, & O'Connell, 1992) 

H. Guidance: Of course, GS 
must explain guidance. It is easier 
to find a white "T" on the left 
than to find the "T" on the right. 
Color/polarity guides attention 
(Egeth, Virzi, & Garbart, 1984; 
Wolfe, Cave, & Franzel, 1989) 

Figure One: Eight phenomena that should be accounted for by a good model of visual 

search. 
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In addition, there are other aspects of the data, not illustrated here, that GS4 seeks to explain. For 

example, a good model of search should account for the distributions and not merely the means 

of reaction times and it should explain the patterns of errors (see, for example, Wolfe, Horowitz, 

& Kenner, 2005). 
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Figure Two: The large-scale structure of GS4. Numbers refer to details in text. Multiple 

lines cartoon parallel processing. 

The structure of GS4 

Figure Two shows the current large-scale architecture of the model. Referring to the numbers on 

the figure, parallel processes in early vision (1) provide input to object recognition processes (2) 

via a mandatory selective bottleneck (3). One object or, perhaps, a group of objects can be 

selected to pass through the bottleneck at one time. Access to the bottleneck is governed by 

visual selective attention. “Attention” covers a very wide range of processes in the nervous 

system (Chun & Wolfe, 2001; Egeth & Yantis, 1997; Luck & Vecera, 2002; Pashler, 1998a,b; 
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Styles, 1997). In this chapter, we will use the term attention to refer to the control of selection at 

this particular bottleneck in visual processing. This act of selection is mediated by a “guiding 

representation,” abstracted from early vision outputs (4). A limited number of attributes (perhaps 

one or two dozen) can guide the deployment of attention. Some work better than others. Guiding 

attention on the basis of a salient color works very well. Search for a red car among blue and 

gray ones will not be hard (Green & Anderson, 1956; Smith, 1962). Other attributes, like 

“opacity” have a weaker ability to guide attention (Mitsudo, 2002; Wolfe, Birnkrant, Horowitz, 

& Kunar, 2005). Still others, like the presence of an intersection, fail to guide altogether (Wolfe 

& DiMase, 2003). In earlier versions of GS, the output of the first, preattentive stage guided the 

second, attentive stage. However, GS4 recognizes that guidance is a control signal, derived from 

early visual processes. The guiding control signal is not the same as the output of early vision 

and, thus, is shown as a separate guiding representation in Figure Two (Wolfe & Horowitz, 

2004). 

Some visual tasks are not limited by this selective bottleneck. These include analysis of image 

statistics (Ariely, 2001; Chong & Treisman, 2003) and some aspects of scene analysis (Oliva & 

Torralba, 2001). In Figure Two, this is shown as a second pathway, bypassing the selective 

bottleneck (5). It seems likely that selection can be guided by scene properties extracted in this 

second pathway (e.g. where are people likely to be in this image? Oliva, Torralba, Castelhano, & 

Henderson, 2003) (6). The notion that scene statistics can guide deployments of attention is a 

new feature of GS4. It is clearly related to the sorts of top-down or “reentrant” processing found 

in models like the Ahissar and Hochstein Reverse Hierarchy Model (Ahissar & Hochstein, 1997; 
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Hochstein & Ahissar, 2002) and the DiLollo et al. Reentrant model (Di Lollo, Enns, & Rensink, 

2000). These higher-level properties are acknowledged but not explicitly modeled in GS4. 

Outputs of both selective (2) and non-selective (5) pathways are subject to a second bottleneck 

(7). This is the bottleneck that limits performance in attentional blink (AB) tasks (Chun & Potter, 

1995; Shapiro, 1994). This is a good moment to reiterate the idea that attention refers to several 

different processes, even in the context of visual search. In AB experiments, directing attention 

to one item in a rapidly presented visual sequence can make it difficult or impossible to report on 

a second item occurring within 200-500 msec of the first. Evidence that AB is a late bottleneck 

comes from experiments that show substantial processing of “blinked” items. For example, 

words that are not reported because of AB can, nevertheless, produce semantic priming (Luck, 

Vogel, & Shapiro, 1996). 

Object meaning does not appear to be available prior to the selective bottleneck (3) in visual 

search (Wolfe & Bennett, 1997), suggesting that the search bottleneck lies earlier in processing 

than the AB bottleneck (7). Moreover, depending on how one uses the term, “attention,” a third 

variety occurs even earlier in visual search. If an observer is looking for something red, all red 

items will get a boost that can be measured psychophysically (Melcher, Papathomas, & 

Vidnyánszky, 2005) and physiologically (Bichot, Rossi, & Desimone, 2005). Melcher et al 

(2005) call this “implicit attentional selection.” As noted above, we call it “guidance.” In either 

case, it is a global process, influencing many items at the same time – less a bottleneck than a 

filter. The selective bottleneck (3) is more local, being restricted to one object or location at a 

time (or, perhaps, more than one McMains & Somers, 2004). Thus, even in the limited realm 
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cartooned in Figure Two, attentional processes can be acting on early parallel stages (1) to select 

features, during search to select objects (3), and late, as part of decision or response mechanisms 

(7). 

Returning to the selective pathway, in GS, object recognition (2) is modeled as a diffusion 

process where information accumulates over time (Ratcliff, 1978). A target is identified when 

information reaches a target threshold. Distractors are rejected when information reaches a 

distractor threshold. Important parameters include the rate and variability of information accrual 

and the relative values of the thresholds. Many parallel models of search show similarities to 

diffusion models (Dosher, Han, & Lu, 2004). Effects of set size on reaction time are assumed to 

occur either because accrual rate varies inversely with set size (limited-capacity models 

Thornton, 2002) or because, in order to avoid errors, target and distractor thresholds increase 

with set size (e.g. Palmer, 1994; Palmer & McLean). 

FIGURE THREE ABOUT HERE 

Figure Three: In GS4, the time course of selection and object recognition is modeled as an 

asynchronous diffusion process. Information about an item begins to accumulate only 

after that item has been selected into the diffuser. 
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In a typical parallel model, accumulation of information begins for all items at the same time. GS 

differs from these models because it assumes that information accumulation begins for each item 

only when it is selected (Figure 3). That is, GS has an asynchronous diffusion model at its heart. 

If each item needed to wait for the previous item to finish, this becomes a strict serial process. If 

N items can start at the same time, then this is a parallel model for set sizes of N or less. In its 

general form, this is a hybrid model with both serial and parallel properties. As can be seen in 

Figure Three, items are selected, one at a time, but multiple items can be accumulating 

information at the same time. A carwash is a useful metaphor. Cars enter one at a time but 

several cars can be in the carwash at one time (Moore & Wolfe, 2001; Wolfe, 2003). (Though 

note that Figure 3 illustrates an unusual carwash where a car entering second could, in principle, 

finish first.) 

As noted at the outset, search tasks have been modeled as either serial or parallel (or, in our 

hands, “guided”). It has proven very difficult to use RT data to distinguish serial from parallel 

processes (Townsend, 1971, 1990; Townsend & Wenger, 2004). Purely theoretical 

considerations aside, it may be difficult to distinguish parallel from serial in visual search tasks 

because those tasks are, in fact, a combination of both sorts of process. That, in any case, is the 

claim of GS4, a model that could be described as a parallel-serial hybrid. It has a parallel front 

end, followed by an attentional bottleneck with a serial selection rule that then feeds into parallel 

object recognition processes. 
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Modeling Guidance 

In GS4, objects can be recognized only after they have been passed through the selective 

bottleneck between early visual processes and object recognition processes. Selection is 

controlled by a guiding representation. That final guiding representation is created bottom-up 

and top-down information. Guidance is not based directly on the contents of early visual 

processes but on a coarse and categorical representation derived from those processes. Why 

argue that guidance is a control process, sitting, as it were, to the side of the main selective 

pathway? The core argument is that information that is available in early vision (Fig 2, #1) and 

later (2) is not available to guidance (4). If guidance were a filter in the pathway, we would need 

to explain how information was lost and then regained (Wolfe & Horowitz, 2004). 

Consider three examples that point toward this conclusion: 

1) Even in simple feature search, efficient guidance requires fairly large differences between 

targets and distractors. For example, while we can resolve orientation differences on the order of 

a degree (Olzak & Thomas, 1986), it takes about a 15 deg difference to reliably attract attention 

(Foster & Ward, 1991b; Moraglia, 1989). Fine-grain orientation information is available before 

attentional selection and after but not available to the guidance mechanism. 

2) Search is more efficient if a target is categorically unique. For example, it is easier to find a 

line that is the only “steep” item as illustrated in Figure One above. There is no categorical 

limitation on processing outside of the guidance mechanism. 
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3) Intersection type (t-junction vs x-junction) does not appear to guide attention (Wolfe & 

DiMase, 2003). It can be used before selection to parse the field into preattentive objects 

(Rensink & Enns, 1995). Intersection type is certainly recognized in attentive vision but it is not 

recognized by guidance. 

Thus, we suggest that the guiding representation should be seen as a control module sitting to 

one side of the main selective pathway rather than as a stage within that pathway.  

In the current GS4 simulation, guidance is based on the output of a small number of broadly-

tuned channels. These can be considered to be channels for “steep,” “shallow,” “left” and “right” 

(for steep and shallow, at least see Foster & Ward, 1991a). Only orientation and color are 

implemented but other attributes are presumed to be similar. In orientation, the four channels are 

modeled as the positive portion of sinusoidal functions, centered at 0 (vertical), 90, 45, and –45 

deg and raised to a power less than 1.0 in order to make the tuning less sharp. Thus, the “steep” 

channel is defined as max(cos(2*deg),0)^0.3. The precise shape is not critical for the qualitative 

performance of the model. In color, a similar set of channels covers a red-green axis with three 

categorical channels for “red,” “yellow,” and “green.” Color, of course, is a 3D feature space. 

Restricting modeling to one red-green axis is merely a matter of convenience.  

Another major simplification needs to be acknowledged. Selection is presumed to select objects 

(Wolfe & Bennett, 1997). As a consequence, the “receptive field” for the channels described 

above is an object, conveniently handed to the model. The model does not have a way to parse a 



Page 14 

continuous image into “preattentive object files” (our term) or “proto-objects”(Rensink & Enns, 

1995, 1998). 

Bottom-up guidance 

The more an item differs from its neighbors, the more attention it will attract, all else being 

equal. This can be seen in Figure Four. The vertical line “pops out” even though you were not 

instructed to look for vertical. That this pop-out is the result of local contrast can be intuited by 

noticing that the other four vertical lines in this image do not pop-out. They are not locally 

distinct (Nothdurft, 1991, 1992, 1993). 

Figure Four: Local contrast produces bottom-up guidance. Note that there are five vertical 

lines in this display. Only one is salient. 
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In GS4, bottom-up salience for a specific attribute like orientation is based on the differences 

between the channel response for an item and the other items in the field. Specifically, for a 

given item, in orientation, we calculate the difference between the response to the item and the 

response to each other item for each of the four categorical channels. For each pairwise 

comparison, it is the maximum difference that contributes to bottom-up salience. The 

contribution of each pair is divided by the distance between the items. Thus, closer neighbors 

make a larger contribution to bottom-up activation of an item than do more distant items (Julesz, 

1981, 1984). The distance function can be something other than linear distance. In the current 

simulation, we actually use the square root of the linear distance. Further data would be needed 

to strongly constrain this variable.  

setsize 
{max[(Ch1(a)-Ch1(b))...(Chn(a)-Chn(b))]/dab} Bottom-up activationΣ


b=1 

Thus, this bottom-up calculation will create a bottom-up salience map where the signal at each 

item’s location will be a function of that item’s difference from all other items scaled by the 

distance between items. 

Local differences are the basis for many models of stimulus salience (e.g. Itti & Koch, 2000; 

Koch & Ullman, 1985; Li, 2002). Many of these use models of cells in early stages of visual 

processing to generate signals. In principle, one of these salience models could replace or modify 

the less physiologically-driven bottom-up guidance modules in GS4. 
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Top-Down Guidance 

Figure Five: Bottom-up information does not define a target here but top down guidance 

can easily direct attention to a specified orientation (e.g. horizontal). 

If you were asked to find the targets in Figure Five, it would be reasonable to ask, “What 

targets?” However, if told to find the horizontal items, you can rapidly locate them. Thus, in 

Figure Five, bottom-up salience does not define targets but efficient search is still possible, 

guided by top-down information. In GS4, top-down guidance is based on the match between a 

stimulus and the desired properties of the target. For each item, the channel responses are the 

signals out of which top-down guidance is created. The “steep” channel would respond strongly 

to the vertical lines, the “right” channel to 45 deg lines and so on. Top-down guidance results 

when higher weight is placed on the output of one channel than on others. In the current 

formulation of GS4, the model picks one channel for each attribute by asking which channel 

contains the largest signal favoring the target over the mean of the distractors. For example, 
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consider a search for an orange line, tilted 22 deg off vertical. If the distractors were yellow and 

vertical, GS4 would place its weights on the red channel (targets and distractors both activate the 

yellow but only orange activates red) and the right tilted channel (for similar reasons). If the 

same target were placed among red 45 deg lines, then it would be the yellow and steep channels 

that would contain the best signal. 

The Activation Map 

In GS, the activation map is the signal that will guide the deployment of attention. For each item 

in a display, the guiding activation is simply a weighted sum of the bottom-up (BU) activation 

and the activity in each channel (comprising the top-down activation) plus some noise. In the 

current version of GS, the weights are constrained so that one weight for a particular dimension 

(color or orientation) is set to 1.0 and the others are set to zero.  This is the formal version of the 

claim that you can only select one feature in a dimension at a time (Wolfe et al., 1990). If you set 

the bottom-up weight to zero, you are making the claim that a salient but irrelevant distractor can 

be ignored. If you declare that it cannot go to zero, you are holding out the possibility of true 

“attentional capture” against the desires of the searcher. There is an extensive and inconclusive 

literature on this point (e.g. Bacon & Egeth, 1994; Folk, 1992; Lamy & Egeth, 2003; Theeuwes, 

1994; Todd & Kramer, 1994; Yantis, 1998) that has been usefully reviewed by Rauschenberger 

(2003). GS4 does not allow the bottom-up weight to go to zero. 

Channels 

[wtbu(BU)] + Σ [wtch(CH)] + noise  Activation Map 
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In earlier versions of GS, the activation map was fixed for a trial. Attention was deployed in 

order of activation strength from highest down until the target was found or until the search was 

abandoned. This assumes perfect memory for which items have been attended. Subsequent work 

has shown this to be incorrect (Horowitz & Wolfe, 1998, 2005). More will be said on this topic 

later. For the present, the relevant change in GS4 is that the added noise is dynamic and each 

deployment of attention is directed to the item with the highest current activation.  

Guidance and Signal Detection Theory 

Note that GS4, to this point, is very similar to a signal detection theory (SDT) model (Cameron, 

Tai, Eckstein, & Carrasco, 2004; Palmer & McLean, 1995; Palmer, Verghese, & Pavel, 2000; 

Verghese, 2001). Consider the standard SDT-style experiment. A search display is presented for 

100 msec or so and masked. The distractors can be thought of as noise stimuli. The target, if 

present, is signal plus noise. In a standard SDT account, the question is how successfully the 

observer can distinguish the consequence of N(noise) from ((N-1)(noise)+signal) where N is the 

set size. As N gets larger, this discrimination gets harder and that produces set size effects in 

brief exposure experiments. SDT models generally stop here, basing a decision directly on the 

output of this parallel stage. In GS, the output of this first stage guides access to the second stage. 

However, for brief stimulus presentation, GS4, like SDT models, would show a decrease in 

accuracy, albeit via a somewhat different mechanism. With a brief exposure, success in GS 

depends on getting attention to the target on the first deployment (or in the first few 

deployments). If there is no guiding signal, the chance of deploying to the target first is 1/N.  

Performance drops as N increases. As the guiding signal improves, the chance of deploying to 

the target improves. If the signal is very large, the effect of increasing N becomes negligible and 



Page 19 

attention is deployed to the target first time, every time.  There is more divergence between the 

models when stimulus durations are long. The rest of the GS model deals with deployments of 

attention over a more extended period. SDT models have not typically addressed this realm (but 

see Palmer, 1998).  GS rules make different quantitative predictions than SDT “max” or “sum” 

rules but these have not been tested as yet. 

Why propose a bottleneck? 

GS is a two-stage model with the activation map existing for the purpose of guiding access to the 

second stage where object recognition occurs. Why have two stages? Why not base response on 

a signal derived, like the activation map, in parallel from early visual processes? Single stage 

models of this sort account for much search performance, especially for briefly presented stimuli 

(Baldassi & Burr, 2000; Baldassi & Verghese, 2002; McElree & Carrasco, 1999; Palmer & 

McLean, 1995). Is there a reason to propose a bottleneck in processing with access controlled by 

guidance? Here are four lines of argument, which, taken together, point to a two-stage 

architecture. 

1. Targets may be easy to identify but hard to find - Consider the search for a T among Ls in 

Figure 1a and the search for tilted among vertical in 1d. In isolation, a T is trivially discriminable 

from an L and tilted is trivially discriminable from vertical. However, search for the T is 

inefficient while search for tilted is efficient. The GS, two-stage account is fairly straightforward. 

The first stage registers the same vertical and horizontal elements for Ts and Ls. However, the 

intersection type is not available to guide attention (Wolfe & DiMase, 2003). The best that 

guidance can do is to deliver one object after another to the second stage. The relationship 
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between the vertical and horizontal elements that identifies an object as T or L requires second-

stage binding. The lack of guidance makes the search inefficient.  The orientation search in 1d, 

in contrast, is easy because the first stage can guide the second stage. This argument would be 

more convincing if the single T and the tilted line were equated for discriminability. Even so, a 

single stage model must explain why one easy discrimination supports efficient search and 

another does not. 

2: Eye Movements – Saccadic eye movements impose an obvious seriality on visual processing 

(Sanders & Houtmans, 1985). Attention is deployed to the locus of the next saccade before it is 

made (Kowler, Anderson, Dosher, & Blaser, 1995) and guidance mechanisms influence the 

selection of eye movement targets (Shen, Reingold, & Pomplun, 2003); (Thompson & Bichot, 

2004); (Motter & Belky, 1998); (Bichot & Schall, 1999).  

Invoking the control of saccades as an argument for a model of covert deployments of attention 

is a double-edged sword. Numerous researchers have argued that overt deployment of the eyes is 

what needs to be explained and that there is no need for a separate notion of covert deployments 

(Deubel & Schneider, 1996; Findlay & Gilchrist, 1998; Maioli, Benaglio, Siri, Sosta, & Cappa, 

2001; Zelinsky & Sheinberg, 1995; Zelinsky & Sheinberg, 1996). If true, the link between 

attention and eye movements is not trivially simple. Take the rate of processing for example. The 

eyes can fixate on 4-5 items per second. Estimates of the rate of processing in visual search are 

in the range of 10 to 30 or 40 per second (based, for example, on search slopes). The discrepancy 

can be explained by assuming that multiple items are processed, in parallel, on each fixation. 
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Indeed, it can be argued that eye movements are a way for a parallel processor to optimize its 

input, given an inhomogeneous retina (Najemnik & Geisler, 2005). 

Eye movements are not required for visual search. With acuity factors controlled, RTs are 

comparable with and without eye movements (Klein & Farrell, 1989; Zelinsky & Sheinberg, 

1997) and there is endless evidence from cueing paradigms that spatial attention can be deployed 

away from the point of fixation (for useful reviews, see Driver, 2001; Luck & Vecera, 2002). 

Nevertheless, the neural circuitry for eye movements and for deployment of attention are closely 

linked (Schall & Thompson, 1999);  Moore, Armstrong, & Fallah, 2003) so the essential seriality 

of eye movements can point toward the need for a serial selection stage in Guided Search. 

3: Binding – As noted earlier, the starting point for Treisman’s Feature Integration Theory was 

the idea that attention was needed to bind features together (Treisman & Gelade, 1980). Failure 

to correctly bind could lead to “illusory conjunctions” in which, for example, the color of one 

object might be perceived with the shape of another (Treisman & Schmidt, 1982). While the 

need for correct binding can be seen as a reason for restricting some processing to one item at a 

time, it is possible that multiple objects could be bound at the same time. Wang, for example, 

proposes an account where correlated oscillations of activity are the mechanism for binding and 

where several oscillations can co-exist (Wang, 1999) and Hummel & Stankiewicz (1998) 

showed that a single parameter that varies the amount of overlap between oscillatory firings acts 

a lot like attention. The oscillation approach requires that when several oscillations co-exist, they 

must be out of synchrony with each other to prevent errors like illusory conjunctions.  Given 
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some required temporal separation between oscillating representations, this places limit on the 

number of items that can be processed at once, consistent with an attentional bottleneck.  

4. Change blindness: In change blindness experiments, two versions of a scene or search display 

alternate. If low-level transients are hidden, observers are poor at detecting substantial changes 

as long as those changes do not alter the ‘gist’ or meaning of the display (Rensink, O'Regan, & 

Clark, 1997; Simons & Levin, 1997; Simons & Rensink, 2005). One way to understand this is to 

propose that observers only recognize changes in objects that are attended over the change and 

that the number of objects that can be attended at one time is very small, perhaps only one. In a 

very simple version of such an experiment, we asked observers to examine a display of red and 

green dots. On each trial, one dot would change luminance. The Os’ task was to determine if it 

also changed color at that instant. With 20 dots on the screen, performance was 55% correct. 

This is significantly above the 50% chance level but not much. It is consistent with an ability to 

monitor the color of just 1-3 items (Wolfe, Reinecke, & Brawn, 2006).  

Early vision is a massively parallel process. So is object recognition. A stimulus (e.g. a face) 

needs to be compared to a large set of stored representations in the hopes of a match. The claim 

of two stage models is that there are profound limitations on the transfer of information from one 

massively parallel stage to the next. Those limitations can be seen in phenomena like change 

blindness. At most, it appears that a small number of objects can pass through this bottleneck at 

one time. It is possible that the limit is one. Guidance exists in order to mitigate the effects of this 

limitation. Under most real-world conditions, guidance allows the selection of an intelligently  

chosen subset of all possible objects in the scene.  
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Modeling the bottleneck 

In earlier versions of GS, object recognition was regarded as something that happened essentially 

instantaneously when an item was selected. That was never intended to be realistic.  Data 

accumulating from many labs since that time has made it clear that the time required to identify 

and respond to a target is an important constraint on models of the bottleneck in the selective 

pathway. If it is not instantaneous, how long is selective attention occupied with an item after 

that item is selected? Measures of the “attentional dwell time” (Moray, 1969) have led to 

apparently contradictory results. One set of measures comes from attentional blink (Raymond, 

Shapiro, & Arnell, 1992; Shapiro, 1994) and related studies (Duncan, Ward, & Shapiro, 1994; 

Ward, Duncan, & Shapiro, 1996, 1997). These experiments suggest that, once attention is 

committed to an object, it is tied up for 200-500 msec (see also Theeuwes, Godijn, & Pratt, 

2004). This dwell time is roughly consistent with the time required to make voluntary eye 

movements and volitional deployments of attention (Wolfe, Alvarez, & Horowitz, 2000). It 

would seem to be incompatible with estimates derived from visual search. In a classic, serial 

self-terminating model of search, the time per item is given by the slope of target-absent trials or 

twice the slope of the target-present trials. Typical estimates are in the range of 30-60 msec per 

item. Efforts have been made to find a compromise position (Moore, Egeth, Berglan, & Luck, 

1996) but the real solution is to realize that slopes of RT x set size functions are measures of the 

rate of processing, not of the time per item. We have made this point using a carwash metaphor 

(Moore & Wolfe, 2001; Wolfe, 2002); (c.f. Murdock, Hockley, & Muter, 1977). The core 

observation is that, while cars might enter (or emerge from) a carwash at a rate of 50 msec/item, 
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they might be in this very fast carwash for 200-500 msec. Of course, a necessary corollary of this 

observation is that more than one car can be in the carwash at one time.  

In GS4, as noted earlier, the “carwash” is formally modeled with an asynchronous diffusion 

model. Asynchronous diffusion is really a class of models with a large number of parameters, as 

illustrated in Figure Six. Having many parameters is not usually seen as a strength of a model 

(Eckstein, Beutter, Bartroff, & Stone, 1999). However, complex behaviors are likely to have 

complex underpinnings. The goal of this modeling effort is to constrain the values of the 

parameters so that variation in a small subset can account for a large body of data.  

Figure Six: The parameters of an asynchronous diffusion model 
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The assumption of diffusion models is that information begins to accumulate when an item is 

selected into the diffuser. The time between successive selections is labeled “ssa” for “stimulus 

selection asynchrony.” It could be fixed or variable. In either case, the average SSA is inversely 

related to the rate of processing that, in turn, is reflected in the slope of RT x set size functions. 

Because search RT distributions are well described as gamma distributions, we have used 

exponentially distributed inter selection intervals. However, it is unclear that this produces a 

better fit to the data than a simple, fixed interval of 20-40 msec/item. 

In the case of visual search, the goal is to determine if the item is a target or a distractor and the 

answer is established when the accumulating information crosses a target threshold or 

distractor threshold. Both of those thresholds need to be set. It would be possible to have either 

or both thresholds change over time (e.g. one might require less evidence to reject a distractor as 

time progresses within a search trial). In the present version of GS4 the target threshold, for 

reasons described later, is about 10 times the distractor threshold. The start point for 

accumulation might be fixed or variable to reflect a priori assumptions about a specific item. For 

example, contextual cueing effects might be modeled by assuming that items in the cued location 

start at a point closer to the target threshold (Chun & Jiang, 1998; Chun, 2000).  In current GS4, 

the start point is fixed. 

Items diffuse toward a boundary at some average rate. In principle, that rate could differ for 

different items in a display (e.g. as a function of eccentricity Carrasco, Evert, Chang, & Katz, 

1995; Carrasco & Yeshurun, 1998; Wolfe, O'Neill, & Bennett, 1997).  The rate divided into the 

distance to the threshold gives the average time in the diffuser for a target or distractor. The 
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diffusion process is a continuous version of a random walk model with each step equal to the rate 

plus some noise. In current GS4, the rate parameter is used to account for differences between 

Os, but is set so that the time for a target to diffuse to the target boundary is on the order of 150­

300 msec. Ratcliff has pointed out that noise that is normally distributed around the average path 

will produce a positively skewed distribution of finishing times (Ratcliff, 1978; Ratcliff, 

Gomez, & McKoon, 2004). This is a useful property since search RTs are positively skewed. An 

asynchronous diffusion model assumes that information about items can start accumulating at 

different times.  

The diffuser is assumed to have some capacity. This brings with it a set of other choices that 

need to be made. If the capacity is K, then the K+1th item cannot be selected until the one of the 

K items is dismissed. At the start of a search, can K items be selected simultaneously into an 

empty diffuser? If items are selected one at a time, then there will be periods when the number of 

items in the diffuser is less than K. This will also occur, of course, if the set size is less than K. 

When the diffuser contains fewer than K items, is the rate of information accumulation fixed or 

is it proportional to the number of items in the diffuser. That is, if K=4 and the set size is 2, does 

the processing rate double? In GS4, we typically use a capacity of 4 items (inspired, in part, by 

the ubiquity of the number 4 in such capacity estimates (Cowan, 2001). Small changes in N do 

not produce large changes in the behavior of the model. At present, in GS4, if there are fewer 

than the maximum number of items in the diffuser or if the same item is selected more than once 

(hard for cars in a car wash but plausible here), then the rate of information accrual increases.   
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Memory in search 

If capacity, N, is less than the set size, then the question of memory in search arises. If an item 

has been dismissed from the diffuser, can it be reselected in the same search? The classic serial, 

self-terminating model (FIT and earlier versions of GS) had a capacity of one (i.e. items are 

processed in series) and an assumption that items were not reselected. That is, visual search was 

assumed to be sampling without replacement. In 1998, we came to the conclusion that visual 

search was actually sampling with replacement - that there was no restriction on reselection of 

items (Horowitz & Wolfe, 1998). Others have argued that our claim that “visual search has no 

memory” was too strong and that selection of some number of recently attended items is 

inhibited (Kristjansson, 2000; Peterson, Kramer, Wang, Irwin, & McCarley, 2001; Shore & 

Klein, 2000). In our work, we have been unable to find evidence for memory in search. 

Nevertheless, we have adopted a middle position in our modeling. Following Arani et al. (1984), 

the current version of GS inhibits each distractor as it is rejected. At every cycle of the model 

thereafter, there is some probability that the inhibition will be lifted. Varying that probability 

changes the average number of items that are inhibited. If that parameter is 1, then visual search 

has no memory. If it is zero, search has perfect memory. We typically use a value of 0.75. This 

yields an average of about three inhibited items at a time during a search trial. These are not 

necessarily the last three rejected distractors. Rigid N-back models of memory in search tend to 

make strong predictions that are easily falsified (e.g. that search through set sizes smaller than N 

will show perfect memory.) Modest variation in this parameter does not appear to make a large 

difference in model output.  
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Constraining Parameter Values 

At this point, the reader would be forgiven for declaring that a model with this many parameters 

will fit all possible data and that some other model with fewer parameters must be preferable. If 

all of the parameters could vary at will, that would be a fair complaint. However, GS assumes 

that most of these are fixed in nature; we just don’t know the values. Moreover, other apparently 

simple models are simple either by virtue of making simplifying assumptions about these (or 

equivalent) parameters or by restriction of the stimulus conditions. For example, if stimuli are 

presented briefly, then many of the issues (and parameters) raised by an asynchronous diffusion 

process become moot.  



  Page 29 

500 

1000 

1500 

2000 

2500

0 5 10 15 20

400 

600 

800 

1000 

350 

450 

550 Feature

Conjunction

2 vs 5

 

 
Figure Seven:  Average RTs for 10 observers tested for 1000 trials per set size in three 

tasks: Feature (red among green), conjunction (red vertical among red horizontal and 

green vertical) and a search for a 2 among 5 (the mirror-reversed item). The black, bold 

lines represent correct responses. Light gray lines are the corresponding error trials.  

Squares are Hits, circles are correct absent responses; closed symbols are means, open are 
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medians (always slightly faster than the means). In the gray error trials, squares are false 

alarms (very rare), circles are misses. Note the very different y-axes. 

The data provide many constraints on models of search. At present, it must be said, that these 

constraints are better at ruling out possibilities than they are at firmly setting parameters, but 

modeling by exclusion is still progress. We have obtained several large data sets in an effort to 

understand normal search behavior. Figure Seven shows average RTs for 10 Os, tested for 4000 

trials on each of three search tasks: A simple feature search for a red item among green 

distractors, a color X orientation conjunction search, and a "spatial configuration" search for a 

"2" among "5"s, the mirror reverse of the 2. The 2 vs 5 search might have been called a "serial" 

search in the past but that implies a theoretical position. Calling it an inefficient spatial 

configuration search is neutrally descriptive. This data set, confirming other work (Wolfe, 1998), 

shows that the ratio of target-absent to target-present slopes is greater than 2:1 for spatial 

configuration searches. This violates the assumptions of a simple serial, self-terminating search 

model with complete memory for rejected distractors. The variance of the RTs increases with set 

size and is greater for target-absent than for target-present trials. Error rates increase with set size 

in all conditions (Fig 8). The great bulk of errors are miss errors– false alarms are rare in RT 

search studies. Miss error RTs tend to be somewhat faster than correct absent RTs (Fig 7).  Thus, 

if a model predicts a large number of false alarms or predicts that errors are slow, it is failing to 

capture the shape of the data. GS4 produces qualitatively correct patterns of RTs as described 

later. 
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Error Rates
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Figure Eight: Average error rates for data shown in Fig. 7. Closed symbols are miss errors 

as a percentage of all target-present trials. Open symbols are false alarms (All false alarm 

rates are low and similar). 

In a separate set of experiments, we tested the same three tasks on a wider and denser range of 

set sizes than is typical. As shown in Figure Nine, the salient finding is that RT x set size 

functions are not linear (Wolfe, Michod, & Horowitz, 2004) submitted). They appear to be 

compressive with small set sizes (1-4) producing very steep slopes. The cause of the non­

linearity is not clear but the result means that models (like earlier versions of GS) that produce 

linear RT x set size functions are missing something. In GS4, a non-linearity is produced by 

allowing the rate of information accrual to be proportional to the number of items in the diffuser 

(up to the capacity limit). Small set sizes will benefit more from this feature than large, causing 

small set size RTs to be somewhat faster than they would otherwise be.  
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Figure Nine: RT x set size functions with linear regression lines fitted to just set sizes 1-4 in 

order to illustrate the non-linearity of these functions. 

The large number of trials that we ran to collect the data in Figures 7-8 allows us to look at RT 

distributions. Search RT distributions, like so many other RT distributions are positively skewed 

(Luce, 1986; Van Zandt, 2002). This general shape falls out of diffusion models (Ratcliff et al., 

2004). In an effort to compare distributions across Os, set sizes, and search tasks, we normalized 

the distributions using a non-parametric equivalent of a z-transform. Specifically, the 25th and 

75th percentiles of the data were transformed to –1 and +1, respectively, and the data were scaled 

relative to the interquartile distance. As shown in Figure Ten, the first striking result of this 

analysis is how similar the distribution shapes are. To a first approximation, distributions for 

feature and conjunction searches are scaled copies of each other with no qualitative change in the 

shape of the distribution with set size. Models that predict that the shape of the normalized RT 

distribution changes with set size would, therefore, be incorrect. Moreover, after this 
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normalization, there is little or no difference between target-present (thick lines) and target-

absent (thin-lines) – also a surprise for many models (e.g. FIT and earlier version of GS). 
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Figure 10: Probability density functions for normalized RT distributions for four sets sizes 

in three search tasks. Thicker lines are target-present, thinner are target-absent. Note the 

similarity of the probability density functions, especially for the feature and conjunction 

tasks. 

RT distributions from the 2 vs 5 task are somewhat different. They are a bit more rounded than 

the feature and conjunction distributions. They change a little with set size and absent 

distributions are somewhat different from present distributions.  A number of theoretical 

distributions (Gamma, Weibull, log-normal, etc) fit the distributions well, and there does not 

seem to be a data-driven reason to choose between these at the present time. GS4 produces RT 

distributions that are qualitatively consistent with the pattern of Figure 10. 
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Hazard functions appear to magnify these differences. Hazard functions give the probability of 

finding the target at one time given that it has not been found up until that time. In Figure 

Eleven, we see that, the hazard functions are clearly non-monotonic. All tasks at all set sizes, 

target present or absent, seem to have the same initial rise (The dashed line is the same in all 

three panels). The tasks differ in the later portions of the curve, but note that data beyond an x-

value of 3 come from the few trials in the long tail of this RT distribution. Gamma and ex-

Gaussian distributions have monotonic hazard functions and, thus, are imperfect models of these 

RT distributions. Van Zandt and Ratcliff (2005) note that “the increasing then decreasing hazard 

is ubiquitous” and are an indication that the RT distribution is a mixture of two or more 

underlying distributions. This seems entirely plausible in the case of a complex behavior like 

search. 
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Figure Eleven: Hazard functions for the probability density functions in Fig. 10. 

From the point of view of constraining models of search, a model should not predict qualitatively 

different shapes of RT distributions, after normalization, as a function of set size, task, or target 

presence or absence for reasonably efficient searches. Some differences between more efficient 

(feature and conjunction) and less efficient (2 vs 5) search are justified. Moreover, inefficient 
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search may produce some differences in distributions as a function of set size and 

presence/absence.  

Target-absent trials and Errors 

In some ways, modeling the process that observers use to find a target is the easy part of creating 

a model of visual search. After all, once attention has been guided to the target, the model’s work 

is done. What happens when no target is present? When do you terminate an unsuccessful 

search? Simple serial models have a clear account. When you have searched all items, you quit. 

Such models predict lower variance on target absent trials than on target present trials because 

target absent trials should always require observers to attend to N items where N is the set size. 

On target present trials, observers might find a target on the first deployment of attention or on 

the Nth. That prediction is not correct. Moreover, we had observers search through displays in 

which items were continuously being replotted in random locations and found that observers can 

terminate search under these conditions even though dynamic search displays would make it 

impossible to know when everything had been examined (Horowitz & Wolfe, 1998). (Note, 

compared to standard search tasks, dynamic search conditions do lead to longer target-absent 

RTs and more errors, suggesting some disruption of target-absent search termination.) 

Instead of having a method of exhaustively searching displays, observers appear to establish a 

quitting rule in an adaptive manner based on their experience with a search task. Observers speed 

subsequent responses after correct responses and slow subsequent responses after errors (Chun & 

Wolfe, 1996). There are a number of ways to implement an adaptive rule of this sort. Observers 

could adjust the time spent searching per trial. They could adjust the number of items selected or 
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the number of items rejected. Whatever is adjusted, the resulting quitting threshold must be 

scaled by set size. That is, the threshold might specify quitting if no target has been found after 

some percentage of the total set size has been selected, not after some fixed number of items had 

been selected regardless of set size. 

In GS4, Miss errors occur when the quitting threshold is reached before the target is found. As 

shown in Figure Seven, Miss RTs are slightly faster than RTs for correct absent trials. Misses 

occur when observers quit too soon. As shown in Figure Eight, false alarms are rare and must be 

produced by another mechanism. If observers produced false alarms by occasionally guessing 

“yes” when the quitting threshold was reached, then false alarms and Miss RTs should be 

similar, which they are not. False alarms could be produced when information about distractor 

items incorrectly accumulates to the target boundary. There may also be some sporadic fast 

guesses that produce false alarms. At present, GS4 does not produce false alarms at even the 

infrequent rate that they are seen in the data. 

The data impose a number of constraints on models of search termination. Errors increase with 

set size, at least for harder search tasks. One might imagine that this is a context effect. The 

quitting threshold gets set to the average set size and is, therefore, conservative for smaller set 

sizes and liberal for larger. This cannot be the correct answer because the patterns of RTs and 

errors do not change in any qualitative way when set sizes are run in blocks rather than 

intermixed (Wolfe, Palmer, Horowitz, & Michod, 2004). Slopes for target-absent are reliably 

more than twice as steep as slopes for target present trials (Wolfe, 1998). 
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Figure Twelve: RT distributions for one observer, set size 3, conjunction task.  

Note the degree of overlap between target-present and target-absent RTs. 25% of correct 

present trials lie above the median for the correct absent trials. Miss error rate in this 

condition is 1.9%. How can observers answer “no” so quickly? 

One of the most interesting constraints on search termination is that observers appear to 

successfully terminate target absent trials “too fast.” Suppose that observers terminated trials at 

time, T, when they were convinced that only X% of targets would require more than T msec to 

find, where X% is the error rate (For the condition illustrated in Figure 12, the miss error rate is 

approximately 1.9%). While the details depend on particulars of the model (e.g. assumptions 

about guessing rules and RT distributions), the median of the target absent RTs should cut off 

about X% of the target present distribution. A glance at Figure Twelve shows that this is not true 

for one O’s conjunction data for set size 3. More than 25% of the correct target present RTs lie 

above absent median. This is merely an illustrative example of a general feature of the data. The 

mean/median of the absent RTs falls far too early. This is especially true for the smaller set sizes 
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where 30% of target-present RTs can fall above the target-absent mean. There are a variety of 

ways to handle this. Returning to Figure Six, it is reasonable to assume that the target threshold 

will be much higher than the distractor threshold. A Bayesian way to think about this is that an 

item is much more likely to be a distractor than a target in a visual search experiment. It is 

therefore reasonable to dismiss it as a distractor more readily than to accept it as a target. If 

observers can successfully quit after N distractors have been rejected, it is possible that a fast 

target-absent search could end in less time than a slow target-present search. The present version 

of GS uses this difference in thresholds to capture this aspect of the data. As noted above, the 

ratio of target to distractor threshold is generally set to 10:1. Nevertheless, while we can identify 

these constraints in the data, we are still missing something in our understanding of blank trial 

search termination. Modeling the pattern of errors is the least successful aspect of GS4 at the 

present time. Parameters that work in one condition tend to fail in others. 

State of the Model 

To what extent does GS4 capture the diverse empirical phenomena of visual search? Figure 13 

shows data for the 2 vs 5 task for a real O (solid symbols) and for the model using parameters as 

described above (same diffusion parameters, same error rules, etc). The free parameter is a rate 

parameter that is used to equate target present slopes so the excellent match between model and 

data for the target present data is uninteresting. Target-absent RTs produced by the model are a 

reasonable approximation of the data, though the slopes are too steep. Standard deviations of the 

RTs (shown at the bottom of the figure) are very close for data and model. The model and the 

observer had very similar errors rates, rising from about 2% to about 8% as a function of set size.  

Model RT distributions are positively skewed and qualitatively similar to the real data.  
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Figure 13a: An example of GS4 model data compared to one O’s data for the 2 vs 5 task. 

Solid symbols indicate the O, open symbols the model. Target-present trials are in black, 

target-absent in grey. Small symbols denote standard deviations.  13b: Miss error rates: 

open bars are data, filled are model results.  

If we now use exactly the same parameters for the conjunction tasks, the model produces slopes 

of 12 msec/item on target-present and 24 msec/item for target-absent trials. This compares well 

to 9 & 26 respectively for this O’s data. However, the model’s target-absent RTs are 

significantly too fast. Moving the distractor threshold is one way to compensate, but this disrupts 

slopes and errors. The model does not quite capture the O’s rules for search termination. The 

heart of the problem seems to relate to the point illustrated by Figure 12. Real observers are 

somehow able to abandon unsuccessful searches quickly without increasing their error rates 

unacceptably. We have not developed a mechanism that allows GS4 to avoid this speed-accuracy 

tradeoff. 
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GS4 does capture other qualitative aspects of the search data, however. Returning to the checklist 

in Figure One, the model certainly produces appropriate set size effects (1a) and differences 

between target present and target-absent trials (1b). The structure of the first, guiding stage 

produces most of the other properties listed here. Search becomes less efficient as target­

distractor similarity increases (1c) and as distractor heterogeneity increases (1d). If the target is 

flanked by distractors, the setting of top-down weights is less successful and efficiency declines 

(1e). If the target is defined by the presence of a categorical attribute search is more efficient than 

if it is defined by the absence of that attribute (1g). Thus, for example, in search for 15 deg 

among 0 deg, GS4 can place its weight on the right-tilted channel and find a signal that is present 

in the target and absent in the distractors. If the target is 0 deg and the distractors are 15 deg, the 

best that can be done is to put weight on the “steep” channel. The 0 deg signal is bigger than the 

15 deg signal in that channel, but not dramatically. As a result, search is less efficient – a search 

asymmetry (1f). And, of course, guidance (1h) is the model’s starting point. If the target is red, 

search will be guided toward red items. 

Summary 

As described above, the current implementation of GS4 captures a wide range of search 

behaviors. It could be scaled up to capture more. The front end is currently limited to orientation 

and color (and only the red-green axis of color, at that). Other attributes could be added. This 

would allow us to capture findings about triple conjunctions, for example (Wolfe et al., 1989). 

Ideally, one of the more realistic models of early vision could be adapted to provide the front end 

for GS. At present, the guiding activation map is a weighted sum of the various sources of top-

down and bottom-up guidance. The weights are set at the start of a block of trials. This is a bit 

simple-minded. A more complete GS model would learn its weights and would change them in 
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response to changes in the search task. A more adaptive rule for setting weights could capture 

many of the priming effects in search. Observers would be faster to find a target if the target was 

repeated because the weights would have been set more effectively for that target (Hillstrom, 

2000; Maljkovic & Nakayama, 1994; Wolfe, Butcher, Lee, & Hyle, 2003); (though others might 

differ with this account Huang, Holcombe, & Pashler, 2004). A more substantive challenge is 

presented by the evidence that attention is directed toward objects. While it would not be hard to 

imagine a GS front-end that expanded the list of guiding attributes beyond a cartoon of color and 

orientation processing, it is hard to envision a front end that would successfully parse a 

continuous image into its constituent “objects of attention.”  The output of such front end 

processing could be fed through a GS-style bottleneck to an object recognition algorithm. Such a 

model might be able to find what it was looking for but awaits significant progress in other areas 

of vision research. In the meantime, we believe that the GS architecture continues to serve as a 

useful model of the bottleneck between visual input and object recognition. 
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