MIT Department of Brain and Cognitive Sciences
9.29J, Spring 2004 - Introduction fo Computational Meuroscience
Instrucior: Professor Sebastiam Seung

Lecture Notes and Lab Problems on Numerical Methods
for
Methods in Computational Neuroscience

Arthur Sherman
Mathematical Research Branch
Mational Institute of Diabetes and Digestive and Kidney Diseases
National Institutes of Health
Bethesda, MD 20892

Augnst, 1997

1 Preliminaries

1.1 Formulas from Calculus

The most important formula in applied mathematics is the Taylor series:

flo) = Y filao) T2 (1
=0 :
Another form:
! n h’2 m h’3
Flot) = F@) + F@h+ @)+)

This can be truncated to give a representation of f in the form of a polynomial:
2

flath) = f@)+ F@h+ O 3

where z < £ < z+h. If the series is truncated after one term one gets the Mean Value Theorem
of elementary calculus. An alternative way to write this is in Big Oh form,

fl@+h) = f(2) + f'(2)h + O(h?), (4)

which means that the error due to truncating the series is some expression that goes to 0 as
fast as h? as h — 0. Equivalently, the error is < Ch? for some constant C' when h is small.
The Taylor series is equivalent to the power series representation of functions:

3 4

z° oz
ezzl—l—x—l—xQ—i—F—i—ﬂ—i—... (5)
=l4+z+22+2+2t+. .. (6)

11—z
The latter is the standard formula for the sum of a geometric series. Comparing Eqgs. 2 and 5

we get a nifty formal expression for how to advance function values from z to 4+ h in terms
of derivatives at x,

f(@+h) =e"Pf(a), (7)

where D is the differentiation operator.

1.2 Sources of Numerical Error

A good general reference is [6]. Precision means how many digits can be represented in the
computer. Since the number of digits is finite in practice (although some programs like Math-
ematica [17] can perform operations in arbitrary precision) irrational numbers like v/2 and
transcendental numbers like 7 and e cannot be exactly represented. Neither can repeating
decimals, like 1/3 in base 10. Finally, even innocent operations between exactly represented
rational numbers can lead to loss of precision. For example, in a hypothetical machine with

base 10 arithmetic and 4 decimal digits .5004e0 x .2000el is rounded to .1001lel, so the last
digit is incorrect.

Precision can be expressed in terms of the machine epsilon (€p.p), the smallest number e
such that 14+ ¢ > 1. 1+ ¢ can = 1 computationally because of the need to line up the decimal
(or binary) point when adding floating point numbers. Our hypothetical machine adds .1000el
and .4999e-4 as follows:

.1000/0000e1
.0000]4999%¢e1

where the digits to the right of the | are lost due to rounding. Thus, €., =~ .5e — 4 or half
the last retained digit.

Typical workstations use base 2 and have a 32-bit word for single-precision real numbers,
and 64 bits for double-precision. Actually, double-precision has more than twice the precision
of single-precision because the number of bits devoted to the fractional part (as opposed to the
exponent) is more than doubled. Typical values are 22 bits for single-precision (&,cp, = 272% =
1.2 x 1077) and 51 bits for single-precision (een = 2752 = 2.2 x 10716). The rule of thumb
is: always use double-precision on a 32-bit machine for numerical work. Cray supercomputers
have a 64-bit word size, so single-precision is fine.

Accuracy means how close a computed answer is to the true answer. Obviously, the accu-
racy can be no better than the precision, but, as the above examples show, finite precision can
lead to a loss of accuracy through round-off error. In less extreme cases, adding or multiply-
ing two similar-sized numbers gives a relative error of O(e,.) which is considered acceptable
(because it is unavoidable).

Solving differential equations requires numerous iterated calculations, so the round-off error
can accumulate. We will examine this later. Generally, however, as long as the round-off error
is not amplified by the algorithm, it is not a big problem. A numerical method which does not
amplify errors is called stable, and we will consider the stability of several algorithms later.

There is one case where round-off can be important: when two nearly equal numbers are
subtracted there is a drastic loss of precision call catastrophic cancellation. For example, .1111
—.1110 = .0001. Four digits of precision are reduced to 1. This comes up in using the quadratic
formula, to find a root that is near 0. For example,

—b— b2 — 4ac
T = 50 (8)

when c is small. This can be avoided by using the mathematically equivalent, but numerically
superior, formula

—2c
T= (9)
b+ Vb? — dac
Another example is computing e~® with the power series of Eq. 5. The terms of the series
alternate in sign, so massive cancellation is needed to yield a small number. A better method

is to compute 1/e®.

The above are examples of ruining a good problem with a bad method. The fixes are
problem-dependent. Sometimes, however, a problem is just intrinsically hard to solve because
it is very sensitive to error (ill-conditioned). An example is finding the double root of z? —4z+4.
A small error O(e¢) in computing the coefficients leads to a big error O(¢%%) in the solution
because the curve is tangent to the z-axis. Another example is trying to solve a system of
linear equations whose matrix is nearly singular. This is geometrically equivalent to finding
the intersection of lines (hyperplanes) that are nearly parallel. One cannot cure such cases in
general; the best one can do is be aware of them.

In the case of solving Ax = b, one can estimate how ill-conditioned the problem is in the
following way. With a suitably defined norm [6] || - || to measure the size of A,

[Az] < [|Allll=]

The natural way to test a numerical solution, Z, is to plug it into the equation and calculate
b = Az and the residual |b — b||. We will be happy if the residual is small, but what does this
tell us about the error, ||z — Z||? Using

lz — || < A~ [11b — bl and 1ol < [[Al[l]]]

we get the estimate R
16— o
7
161l

= — 2|
]

so we define the condition number of A

< [lAlAT|

cond(A) = [|A]|[[A7"]. (10)

If cond(A) is large, the error may be large even though the residual is small.

A more serious way that finite resources (computing budget; disk space) and finite time
(lifetime; time to get tenure; time to finish Ph. D. thesis) contribute to error is in the finite
approximation of infinite limiting processes: derivatives are replaced by difference quotients;
integrals are replaced by Riemann sums; and infinite sequences are truncated. This is called
truncation error or discretization error. That is, the discretized problem can be solved to
machine precision, but that may be only an approximation to the real continuous problem.
This sort of error cannot be eliminated, but our goal is to make efficient use of the available
resources. That will be the main focus below.

2 Ordinary Differential Equations

The general initial value problem we want to solve is

Y ft ()

with initial condition y(0) = yo. This is a first-order differential equation. y and f(y,t) can
be vectors when we have a first-order system. For example, the Hodgkin-Huxley equations
have y = (V,m,h,n). The ¢t dependence may reflect experimental manipulations, such as
turning an applied current on and off, or other external influences, such as an imposed synaptic
conductance change from another cell. We will suppress the ¢ dependence for simplicity in many
cases below.

First order systems are natural in neurobiology. If confronted with a higher order system,
convert it to first order, since most solution packages assume this form. For example, the
second order equation

2" +1012" + 1002 = 0 (12)

can be converted by the transformation z = z,y = 2’ to
d [z 0 1 x
%(y)‘(—loa —101><y) (13)

The simplest method of solving ODEs is Euler’s method, which directly applies Eq. 4:

2.1 Euler’s Method

Ynt+1 = Yn + hf(yn)- (14)

In order to integrate from the initial data at ¢ = 0 up to t = 7', divide the interval into N
equal steps of size h = T/N and approximate y(t, = nh) = y,. This method works and is
sometimes used in practice, but much better alternatives are described below. Nonetheless, it
is the conceptual basis of all other methods, and a little analysis gives insight into how they
all work.

2.2 Convergence and Accuracy of Euler’s Method

It is easy to see that Euler’s method converges for the special case of the equation 3’ = Ay
with solution y(T') = yoe*’. For this example,

yn = yo(L+ hX)N = yo(1+TA/N)Y (15)

Recalling that limy (1 + 1/N)N = e, we see that limy 00 yn = yoe7 .

The following argument outlines the proof for general problems and gives an estimate of
the error. You may skip to the conclusions below if you like.

From Eq. 4 we see that the error incurred in going from t, to t,1 is O(h?). Due to
accumulation of these local errors over N = 1/h steps, the global error at time 7" is O(h). The
proof follows:

Let e, = y(t,) — yn be the error at ¢,. To see how e, grows with n, subtract

Yn+l = Yn + hf(yn)-
from
y(t +h) =y(t) + hf(y(t)) + O(h?)
to get
entl = én + h(f(y(t)) - f(yn)) + O(h2)
Applying the Mean Value Theorem to f,
en+1 < en + hMey + O(hQ)a
where M is the maximum of f(y) over the interval of interest. This has the form
ent1 < aep + B,

where = 1 + hM, and 8 = Ch?. (FYI: This difference equation is the same one that arises
in computing mortgages and annuities.) Assuming the initial error is 0, then

61<,3
eo < af+p
and
en <B(L+...+a")

Summing the geometric series,

n_ 1 n
en< g g
a—1 a—1
Replacing a and B by their definitions,
Ch N _Ch yun Ch yr
eN<M(1—|-hM) <37¢ =27¢ - (16)

Conclusions: This error estimate shows
e The global error at T is O(h) (first order accuracy).

e The error grows exponentially in time.

e The error increases with M. This suggests that one should take smaller steps where the
solution is changing more rapidly. We will return to this below.

The error analysis above ignores round-off error. If one assumes that a fixed error is added
at each time step, then the error estimate of Eq. 16 is modified to O(h) + O(€enenh™!). That is,
taking more steps reduces the discretization error, but increases the round-off error. Therefore,
there is a point of diminishing returns where the total error increases as h decreases. Better
results require not more effort, but more efficiency. The key is to take more terms of the Taylor
series and reduce the discretization error to O(hP), with p > 1.

2.3 Higher Order Methods: Runge-Kutta

Euler’s method is analogous to using a Riemann sum to evaluate an integral (quadrature) (and
is in fact equivalent if the ODE is 4’ = f(¢)) in that f is evaluated at only one endpoint of the
time interval. By analogy with the trapezoidal rule for quadrature one can average the values
of f at the left and right endpoints and obtain second-order accuracy:

@ (f(tna yn) + f(tn+1,yn+1)) . (17)

Yn+1l = Yn + 2

An immediate problem is that y,+1 appears on both the right and left sides of the equation;
this is therefore said to be an implicit method. One approach is to use an Euler step to estimate
Yn+1- The resulting method is called Heun’s method:

Zn41 =Yn + h.f(tn, yn) (18)

h
Yn+1 = Yn + 9 (f(tnayn) =+ f(tn+1azn+1)) .

This turns out also to be second order accurate, although not as stable as the genuine trape-
zoidal rule.
Another second order method is the midpoint method:

h
Zn+1 = Yn + gf(tna yn) (19)

Yn+1 = Yn + hf(tn+la Zn—i—l)-

Both Heun and midpoint belong to the family of second order Runge-Kutta methods and are
considered omne-step methods since they require only the value of y at the last time step to
start. Both require two function evaluations per step, vs. one for Euler. However, the gain in
accuracy far outweighs the extra effort (see Exercise 5). Even further gains are achieved by
going to the fourth order Runge-Kutta method (RK4), which samples f four times per time
step:

m1 = f(tn,Yn) (20)

h

m2 = f(ty10Yn + 5mm1)

h
mg = ft, 190 + §m2)
my = f(tns1,Yn + hmg)

h
Ynt1=Yn + ¢ (m1 + 2ma + 2mg3 + ma)
where ¢, 1= tn +h/2. Note that f is probed at each end point and twice in the middle of the
interval. The analogous quadrature method is Simpson’s rule, which is a weighted average of
the trapezoidal and midpoint quadrature rules. This is a commonly used integration method,
but not the best. For many scientists writing their own codes, it appears to represent the

psychological break-even point between investing more effort in programming vs. investing
more CPU time.

RK4 is also a break-even point in the sense that one cannot get 5th order accuracy with
5 function evaluations; a minimum of 6 are required. Moreover, with 6 function evaluations,
there are many combinations that give 4th or 5th order accuracy. This opens up a way to
dramatically improve Runge-Kutta by monitoring the local error and varying the step-size.
One update matches the Taylor series up to 4th order, and the other to 5th order. Thus,
the difference between the two is a good approximation to the error in the 4th order update.
The 5th order update is used to advance the solution, and the error estimate is used to adjust
the step size. This trick and a set of usable coefficients are due to Fehlberg, but there are
many variants. Implementation details and code can be found in [12]. A more naive method
based on taking steps of size h and 2h to get an error estimate also works, but requires nearly
twice as many function evaluations per step. Both simple and adaptive versions of RK4 are
implemented in dstool and xpp.

2.4 Predictor-Corrector Methods

Heun’s method (18) is also an example of a predictor-corrector method: an Euler step is used
to predict y,11, and a trapezoidal rule step corrects it (improves the accuracy). To implement
the full trapezoidal rule, one must solve the non-linear equation for y,;. One way is to use
Newton’s method. A simpler approach is to iterate the corrector step. Once an initial estimate

(0)

Yn+1 1s obtained using Euler, it can be used to get a better estimate,

h
yél-f)-l =Yn + 2 (f(tnayn) + f(tn+1,y¢(1(21))) (21)

(p)

and so on until the successive values of y, 7, differ by less than a prescribed tolerance. The
iteration is guaranteed to converge provided that h is small enough. We will next describe a
more sophisticated predictor-corrector method for ODEs, but trapezoidal rule based methods
are often used for PDEs.

2.5 Multi-step Methods
Although Runge-Kutta with adaptive stepping works pretty well, for problems with complex

f’s, 4 function evaluations per time step may be a steep price to pay. Multi-step methods use
the values of y at several previous time steps. The Adams methods have the general form:

tnt1

Ynt1 =Yn+h] p(t) dt, (22)
where p(t) interpolates f(¢,y(t)). The explicit r-step Adams-Bashforth (AB) method interpo-
lates at tn,tn—1,...,tn—r, SO

Ynt1 =Yn +h[cofn + 1 fn1 + o+ oot frrya], (23)

where f, = f(tn,y(tn)). The implicit r-step Adams-Moulton (AM) method interpolates at
tn+17 tn,--- 7t’n+177"a S0

Yntl =Yn +h [EOfn-I-l +cifn+ ..o+ Er—lfn—r—l—Q] . (24)

The r-step methods have truncation error O(h").

AB and AM are generally used as a predictor-corrector pair. AM can be iterated repetitively
until it converges, but in practice one PC step is considered best. If insufficient accuracy is
obtained, it is better to reduce the time step than to iterate further.

The most commonly used members of the family are the 4-step AB:

h
Yn1 =Ynt 5f [55fn — 59fn—1 + 37fyn—2 — 9fn-3], (25)

and 4-step AM:
h
Yntl = Yn + ﬂ [gfn—H + 19fn - 5fn—1 + fn—Q] . (26)

For a derivation of the strange-looking coefficients, see [6].

The strong suit of AB/AM is that only 2 function evaluations are needed per step; each
value is used 4 times, not discarded as in RK4. This is also the Achilles heel, however: to
start, 4 values of y are needed. These are generally provided by RK4.

A fixed step-size version of AB/AM is included in xpp, but the method is most useful with
variable steps. The key is that the error can be estimated from the P and C values of y,41.
The local error for both AB and AM is O(k®), but with different constants:

y = yp+cph® (27)
y = yc+cch® (28)

Subtracting we have
0=yp —yc+ (cp — cc)h® (29)

Using Eq. 28 we can eliminate h® to get an estimate for the error in the corrector value, y¢:
g &g g

Ccc
Cc — Cp.

Yy —yc =~ (yp —yc) (30)
Using values ¢¢ and cp obtained from standard formulas for the error in polynomial interpo-
lation we end up with

19
270
If y is a vector, a scaled sum of the components should be used. If the error is greater than a
preset maximum, h is halved; if the error is less than the minimum, h is doubled. When £ is
halved, new starting values can be obtained by interpolating with RK4. When A is doubled,
4 new starting values can be obtained by using every other old step, provided 7 old points are

saved. Additional implementation details can be found in [12], along with a polemic against
PC methods.

ly —yol = = lyp — yol - (31)

2.6 Stability and Stiff Equations

So far, our choice of h has been dictated only by accuracy. We will now see that stability must
also be considered. This is especially critical in problems with multiple time scales.

As we saw in Eq. 15 Euler applied to 4/ = Ay gives yny = %o(1 + hA)", which converges
to yoe as h — 0. We also proved that the error decreases like h. However, if A < 0, then
not only will the error be large if h is taken too big, but the numerical solution will grow
exponentially instead of decaying exponentially like the true solution. In order to guarantee a
decaying solution h must satisfy

|1+ hA| <1 (32)
or
-2

0<h<7 (33)

(Monotonic decay requires h < —1/X.)
An alternative that avoids this difficulty is to use an implicit method, backward Euler:

Ynt1 = Yn + hf (tnt1, Ynt1)- (34)

In general, a non-linear equation must be solved for y,1, but for our linear example we get

the following recursion:
1
Ynt1 = T3 Un (35)

From the Taylor series (Eq. 5) we see that this agrees with forward Euler to first order, so it
too will converge to the solution with global error O(h). Furthermore, the solution will always
decay for any A which is negative. So, the solution may be inaccurate, but it will never blow
up- In fact, if h is very large, the solution will be damped even more rapidly. That is, the
method pushes the decaying solution prematurely towards its steady-state value of 0.

Thus, backward Euler is unconditionally stable for any equation with decaying exponential
solutions, whereas forward Euler is stable conditioned on restricting h. (On the other hand,
the backward Euler solution grows when A > 0, but so does the real solution, so we can’t
complain.)

Applying the trapezoidal rule (17) to the same case gives

1+ h)/2

Yn+1 = myn (36)

Like backward Euler, this decays for all A < 0, but the multiplying factor -+ —1 as A — —o0,
so the trapezoidal can suffer from slowly damped spurious oscillations.

An explicit alternative method, exponential Euler, sometimes used to avoid instability in
linear equations of the form

W — Ay + B (37)

makes the next iterate a convex combination of the current value and the steady-state:

Ah

B (38)

= - 1
Yn+1 = Ynt€ A(

See [9, p. 251-254]. As h — 0, this reduces to regular Euler. For large h the solution remains
bounded, but it is not clear what the accuracy is. We will return to this method in the context
of PDEs.

Next we give an example of a method that looks more attractive than forward Euler, but
is unstable for any value of h:

Ynt+1 = Yn—1 + 2hf(yn) (39)

This is an explicit, two-step, multistep method which is second order accurate (see Eq. 56); it
is sometimes called the leapfrog method. Applying it to the equation y' = —y gives

Yn+1 = —2hyn + Yn—1. (40)

This is a linear second-order difference equation and can be solved analytically in a manner
analogous to linear second-order differential equations [6]. Here we just state what the solution
is. To make the numbers work out simply we choose h = 3/4. Then, if yp = 1,51 = 0.5,
yn = 27". This exponentially decaying solution is a reasonable approximation to the ODE
given the coarse time step. However, if yg = 1+¢, then y, = (1+%)2_”—§(—2)”. Only an O(e)
error is introduced into the coefficients, but over time the exponentially growing component
will dominate if € is not exactly 0. Making h smaller reduces the degree of instability but
does not eliminate it. The decaying solution to the ODE cannot be stably computed by this
algorithm. Note that forward Euler is stable for this equation with this h. Although leapfrog
by itself is unstable, it is a key building block of an effective method, Bulirsch-Stoer [12].
The above examples may seem artificial. After all, the stability condition for forward Euler
merely says that A can’t be more than twice the time constant. To resolve behavior on the
order of the time constant requires a small time step any way. If the behavior for long times
is desired, it is more sensible just to look at the steady-state solutions. A real problem arises,
however, when an equation has at least two disparate time constants. Eq. 12 illustrates the
difficulty. The eigenvalues of the system are —100 and —1, so the general solution is

2(t) = Cre™10% 4 Che! (41)

with the C; determined by the initial conditions z(0), 2’(0). The solution has a slowly decaying
component and a rapidly decaying one. After a short time, the fast component is negligible, but
an explicit method like forward Euler must take a time step dictated by the fast component.
An implicit method will effectively take the fast process to equilibrium. That component will
be solved inaccurately, but it is small, and the overall solution will be good. One can informally
measure the stiffness by the ratio of the largest to the smallest eigenvalue in magnitude. Here
it is 100, but in some systems, especially chemical reaction systems, the ratio can be 106.
Backward Euler was demonstrated here to illustrate the principle, but in practice one needs
higher order methods. Forward and backward Euler can be combined in a predictor-corrector

10

pair. One iteration gives Heun’s method, which is second order, but lacks the stability of
the fully implicit trapezoidal rule. One could iterate to convergence, but convergence is slow
precisely when the system is stiff. An alternative is to use Newton’s method.

A family of implicit methods of order up to 5 or 6 is used in the algorithm of Gear [4]. The
first order method is backward Euler,

Yn+1 = Yn + h.f(yn-f-l), (42)

The method of order k is

Yntl — G0Yn — G1Yn—1— -+ — Gk 1Yn—(k—1) = hbpf (Ynt1) (43)

Thus, like Adams-Moulton, these are implicit multistep methods, but they use old values
of y rather than f(y), and they evaluate f only at the right endpoint of the timestep interval.
The coefficients can be derived using the elegant formalism of operator series (Ex. 23), as can
the strange coefficients of the Adams family of methods [5, pp. 104-110].

In practice, to solve stiff systems it is best to use one of the many packages around that
implement the Gear method [4]. xpp has a Gear option. If writing your own driver code, you
can use the IMSL DGEAR subroutine or the public domain subroutine LSODE.

2.7 Attractors and Chaos

One way in which biology is easier than physics, is that the dynamical systems usually have
stable attractors. For example, it is easier to calculate a limit cycle numerically, than the
orbit of a simple harmonic oscillator, because errors in the numerical solution are damped
by the trajectory’s approach to a stable attractor. The error estimate for Euler’s method
(Eq. 16) suggests that the error grows exponentially in time. This occurs in problems with
neutrally stable orbits, but not those with limit cycles (cf. Ex. 11). Similarly, when computing
bifurcation diagrams, the structural stability of features such as Hopf bifurcations means they
preserved in the face of small perturbations due to round-off error, although the location will
be somewhat in error.

Occasionally one runs into models with chaos, which suffer from sensitive dependence
on initial conditions (Ex. 12). One might think that it would be impossible to compute
a meaningful solution because any error would be magnified exponentially. However, even
chaotic solutions are attracted to a stable set; asymptotically the orbits are only wild within
the confines of the attractor. It turns out that the numerically computed trajectory, while not
faithful to the true trajectory with the given initial conditions, is shadowed by another true
trajectory with different initial conditions. Thus, acceptable answers are obtained, even with
simple methods like Runge-Kutta, provided we relax our standards from “Leave with the one
that brought you” to “If you can’t be with the one you love, love the one you're with.”

Of course, there are delicate problems that are difficult to resolve numerically, but the mere
existence of chaos does not necessarily invalidate numerical methods.

11

2.8 Choosing a Method

We cloge the ODE section with advice on how to choose a method for your problem. See also
[12] for another point of view.

On maost problems almost anything will work, even Euler if you are patient. From the
point of view of efficiency, however, using adaptive methods will return the investment of
programming or intellectual effort enormously.

Lower order methods, such as Heun's method, are not used muoch, bt are ineluded becanse
they are closely related to PDE methods such a8 Crank-Nicolson that follow. There is one
important exception. Heun's method is often wsed for stochastic differential equations where
RK methods of order higher than 2 are attainable only for special systems. See [3].

Problems atiff emough to mandate wsing Gear are rare in nenroscience, but the LSODE
package is a reliable, general purpose solver with good error and stepsize control and options
for Adams type methods as well. There is now a version in C, called CVODE.

One problem that poses special difficulty is discontinuities. Unfortunstely, these arise
naturally in neuroscience when simulating voltage-clamp steps, integrate-and-fire neurons, or
noise from channels or other sources. Naive implementations of multi-step methods tend to
fail because they attempt to it a smooth polynomial to past values, on the other side of the
dipeontinnity. Robust versions of Gear like LODE will isolate the singularity and restart, but it
1s more efficient to tell the solver about it explicitly. This s what xpp does. See Ex, 13, Hunge-
Kutta methods are simpler for problems with discontinnities becanse they have no memory
of the past; they essentially start over at each time step. However, they will be redoced to
first-order accuracy if the discontinuous eventa do not occur on time-step boundaries. Second.
order accuracy can be achieved in integrate-and-fire networks by uwsing linear interpolation to
determine firing times between time steps [7).

There are many sources of free software, moch of it of high quality. The book Numeri-
cal Recipes [12] is a valuable source of algorithms and codes on many topics in addition to
ODEs. Consult the ODE chapter for adaptive RK, and also the Bulirsch-Stoer method which
we have nob covered here, On the Web, there is a large repository maintained at netlib
http:/fwww.netlib.org The National Iustitute of Standards and Technology has a Guide to
Available Mathematical Software [GAMS), which ineludes a decision tree to help locate the
appropriate routine [http://gams.nist.gov). Since sites like these are subject to change and
new ones are likely to emerge, look at my Web page (http:/ /mrb.niddk nih.gov/sherman) for
updates,

The choice of method can depend in subtle ways on the nature of the problem, so it is
important to e alert and Hexible, 1t s worthwhile to experiment with more than one method
to be safe. Getting answers from more than one source also bhelps to debug programs (or xpp
or detool input files). It is also helpful to know the answer, This i3 not meant facetiously:
if you have knowledge of the gualitative properties of the solution or quantitative estimates
of the expected sizes you will not be seduced by erronecus answers that look good, See for
example Ex. 16, 17. Finally, supplementing numerical methods with analytical approaches
is recommended. Programe like Mothematica and Maple help make this realistic even for
non-experts.

12

3 Partial Differential Equations

3.1 Cable Equation

PDE’s are much more complicated than ODE’s, and each of the several classes requires its
own solution methods. Fortunately the two main equations that come up in neuroscience are
relatively easy to handle. They are the linear cable equation,

(9_1):)\2

ot

where 7 = 1/(r¢m), A2 = 71, /7i, and the nonlinear Hodgkin-Huxley equations and its variants,

o ,0%
TE = A w - Izon (m, n, h) (45)
)9 = saul) — 5,

where s = m,n,h and I, is scaled by a typical conductance for comparison to the cable
equation. Note that the gating variables s have no direct spatial dependence, but vary in
space because v varies. The close relationship of these equations respectively to the diffusion
and reaction-diffusion equations of chemistry and physics means that there is a rich legacy of
techniques to draw on.

Most of the additional difficulties in going from ODEs to PDEs already arise in the linear
case, so we will focus on that first.

3.2 Steady-State Cable Equation: Boundary Value Problems

For simplicity we consider first the steady-state cable equation for which time derivatives are
0 and the equation reduces to an ODE boundary value problem (BVP),

N —v= 4
. v = 0, (46)

on a cable running from z = 0 to x = L. To completely specify the problem we need boundary
conditions. The simplest case is to clamp v at the endpoints:

vz =0)=VW,ve=L)="V. (47)

One could solve this by the shooting method: turn it into a system for v and v, and solve the
initial value problem with a known initial condition for v and an unknown v;. Guess a value
for v, and integrate to x = L. The goal is to find what value of v, at 0 makes v = vy, at £ = L.
This is how xpp does it (Ex. 20).

We take a different approach which generalizes to the time-dependent case. We divide the
interval [0, L] at J + 2 points z; = jk,j =0,...,J + 1,k = L/(J + 1) (We reserve h for time
step and use k for space). Note that zo = 0 and =741 = L. We define v; = v(z;).

13

Instead of converting to a first-order system we directly discretize the second derivative of
v. Using the Taylor series for v at z; to the left and the right we have

k? K3 k*

’Uj_|_1 = Uj + ’Ua;(.'L'j)k + Uzz(.’Ej)? + vmm(a:j)F + Uzzzz(zj)ﬂ +... (48)
k2 k3 k4

vi-1 = v~ valzs)k + wa(xj)? - me(%’)g + 'Umcmc(xj)ﬂ +...

Adding and solving for vz, (z;) we get a second-order accurate approximation:

Vj—1 — 2’Uj + Vj+1

- +O(k?) (49)

Vge(T5) =
Thus, we replace Eq. 46 with a linear system of algebraic equations:

)\2
k:_2 [Uj—l — 2’Uj + ’Uj_|_1] — v = 0 (50)

forj=1,...,N.
If we think of each grid interval as a compartment, then Eq. 50 can be rewritten
k% (vj —vj41) — (V-1 — V)] + k:—; =0.
using A? = r,,,/r;. This has the satisfying physical interpretation that, at steady-state, the sum
of currents into the compartment from the neighboring compartments and the current across
the membrane is 0.

Note also that by discretizing we have in a sense converted the continuous PDE into a
compartmental representation of the axon. Conversely, the solution methods here apply equally
to compartmental models.

We can write Eq. 50 more compactly in matrix form. Let V = (v1,...,vs); we do not
include vy or vy41 because they are known and get put into the right hand side of the equation.
Then

AV =b. (51)
b = (—2—;?10,0, ...,0, —;c\—zfuL); A is a tridiagonal matrix:
)\2
A= k_2B -1 (52)
where I is the identity matrix and B is
-2 10 0 0 O
1 -2 1 0O 0 0
: : : (53)
0 00 1 -2 1
0 00 0o 1 -2

14

This matrix equation can be easily solved by Gaussian elimination in O(J) time. See the
Appendix for formulas and also [6, 10].

It is more common to specify the boundary conditions in terms of current instead of voltage.
For example, one might inject a current I at £ = 0 and have no current flow across x = L
(sealed end). The equation for axial current flow (Ohm’s Law) gives

ov
%(x =0)=—nrl (54)
Ov
%(x =L)=0. (55)
We get a second-order accurate discretization by subtracting and solving for v;(z;) in Eq. 48:
v(aj) = FHZL L O(R?). (56)

The sealed end = L can then be satisfied by setting v;12 = vy. This appends an equation
for vy41 to Eq. 50:

A2
]{7—2 [2’UJ - 2U]+1] —UVj4+1 = 0, (57)
Similarly, we append an equation for vy:
)\2
k_2 [2’01 — 2v9 + 2k’l"iI] — vy = 0. (58)

3.3 Time Dependent Cable Equation: Initial Boundary Value Problem

One approach to the time dependent case (still linear) is to view the PDE as a system of ODE’s

for the vector V of v;’s:

av
— =AV.
T V. (59)

Equivalently, one can think of this as a compartmental model. One could solve this system by
forward Euler,
h
Vil =V —AVT, (60)
T

at a cost of one O(J) matrix-vector multiplication per time-step. (We now use superscripts
to distinguish time steps from spatial grid size.) One can guess (correctly) that the accuracy
of this method is O(h) + O(k?). The equations at the boundaries are modified as for the
steady-state pure boundary value problem.

As we saw in the section on ODE’s, Euler is stable for equations with decaying solutions
(like this one) only if h < —2/min,,(),,). The eigenvalues of B can be computed explicitly

(Ex. 19) to be
= TN 1) = _4sin?2 T
Am =2 (cos (1) 1) 4 sin 2 1) (61)

15

Then the eigenvalues of A/7 are

—4X2 , mm 1
= i — - 2
Hm = "o S 2(J+1) 7 (62)

The first term is due to the diffusion, the second to the kinetics. If the kinetics are made slow
by decreasing g, 7 increases while A\2/7 remains constant. Then, only the first term matters,
and the fastest component is uy, for which the sin factor = 1. Thus, the stability condition
for forward Euler for this case is
—2 k2T
h < EwpeyEEa el (63)

This is a bad thing: to achieve greater accuracy we must make k and h smaller. To maintain
stability, cutting k in half requires cutting A by 4. For compartment models, the same holds
as we increase the number of compartments.

Another way to view this situation is to estimate the stiffness of A by looking at the ratio
of minimum and maximum eigenvalues ([6, 10]:

AN 2 Jrm L
py ' SW 34Ty T 7 (64)
G g dm 1

®>r 20J+1) 7

For large 7 and large J this ratio is O(J?), i.e., the stiffness increases as the square of the
number of grid points or the number of compartments. The PDE, which corresponds to the
limit J — oo, can be thought of as infinitely stiff. Because A is symmetric the ratio uy/p; is
equivalent to the condition number of A (Eq. 10; see also [6]).

By doing a discrete Fourier transform of the iteration equations (60) one can see that making
k smaller introduces more Fourier components with shorter wavelength into the solution [6].
Although these contribute little to the solution, they explode if the stability condition is not
satisfied.

On the other hand, increasing g makes the cable equation less stiff. Then 7 shrinks while
A2 /T stays fixed and the stiffness ratio — 1. Of course, the kinetics speed up, and we still need
a small time step to resolve the fast kinetics, but at least the choice of A is not bound in an
adverse way to the choice of k.

3.4 Implicit PDE Methods

If the problem at hand is stiff, one must resort to implicit methods. For example, backward
Euler for the PDE is

‘rn—l—l ‘rn hA‘fn‘i‘l' (65)
T
This is linear and readily solved:

(I— @A)V"+1 =V (66)

T

16

This method is unconditionally stable, like the corresponding ODE method. At each step a
tridiagonal system similar to (51) must be solved. The same considerations about handling
boundary equations apply. The solution at each step can be obtained in O(J) operations, the
same as forward Euler. The accuracy is also the same, first order in time and second order
in space. In effect this means that even though stability is not compromised, A must still be
proportional to k? for efficiency: intuitively, it makes no sense to invest an enormous effort in
reducing the error due to k while the error due to h is still large (See also Ex. 22).

A better method that is second order accurate in both space and time is the trapezoidal
rule (also known as Crank-Nicolson),

h

Vn+1 —yn 4+ —
2T

(AV™ + AV, (67)

which can again be implemented by solving a tridiagonal system,

h n+l __ h n
(I— EA)V =(I+ ;A)V . (68)
(cf. Eq. 36) This takes no more work than backward Euler and is also unconditionally stable,
so generally it is preferred.

Even Crank-Nicolson can not escape the clutches of the fundamental ratios 7/A? (contin-
uous) and h/k? (discrete). If h/k%? > 1, huy will be negative and very large in magnitude,
giving rise to high frequency oscillations, sometimes called “ringing”. The trapezoidal rule will
damp these out, but slowly (recall Eq. 36). This comes up especially in the presence of discon-
tinuities, as when simulating a voltage-clamp. In practice it is sufficient to take h/k < L/,
where L is the length of the cable [15, p.132]; this ensures that the high frequency components
are damped more rapidly than the low frequency. Alternatively one can use backward Euler,
which does not suffer from this problem, although it too will give inaccurate answers if h/k?
is taken too large.

The program Genesis includes a version of exponential Euler as an alternative to implicit
methods, which do not fit well with the overall structure of the package. It is applied to each
line of Eq. 59,

d’Uj)\2
el G

1
nL =200) — o, (69)
to give the iteration

P = e + L(vi_y 4+ vj1)(1 — e,

J J
where o2n h
A = S
Tk? T
and
r A2 [Tk?

- 2X2/7k2 — 1)1

In a pure diffusion equation (no decay term in Eq. 44), I" = 1/2. Then, for large A, exponential
Euler sets each value to the average of its two neighbors. This will eventually converge to the

17

solution of the one-dimensional Laplace equation, i.e. the steady-state. Thus, the solution does
not blow up even with large h. However, in general, it only converges to the correct solution
as h, k, and h/k* — 0, a much more restrictive condition than the stability condition for
forward Euler. It may be more accurate and less expensive to use forward Euler. Exponential
Euler would be at its best in non-stiff problems (few compartments/large k), with fast, linear
kinetics.

3.5 Nonlinear Cable Equations

We are finally ready to solve the full non-linear Hodgkin-Huxley equations (Eq. 45) with
a modified Crank-Nicolson scheme. In general, implicit methods are difficult for non-linear
problems, but we can exploit a particular feature of Hodgkin-Huxley (observed by Hines [8])
to make life easier: The equation for v is linear in v if the gating variables s are held fixed, and
the equations for the s are linear in s if v is held fixed. Thus, we can use the following scheme:

1

T (vt v = A B B 4 L (B (S 4 (57 V] (70
Ts(}[L/") (Sn+1/2 B Sn71/2) _ % [(soo(Vn) _ Sn—|—1/2) + (860(V") — Sn71/2)] (71)

Note the staggering of the time grids for V and S§. One does a trapezoidal rule step to
advance S from step n — 1/2 to n+ 1/2 using V" and does a trapezoidal rule step to advance
V from n to n + 1 using S™*1/2. Thereby only linear tridiagonal equations have to be solved
for v at each step. (The equations for s can be solved analytically because s; does not depend
on s; when v is fixed.) The staggering (analogous to the midpoint method) makes the process
second order accurate in time.

To motivate the staggering of time consider the following simple ODE example [2, Vol. I,
Chap. 9].

d’z
We can write this as a first order system,
T = v (73)
= —z. (74)
This can be discretized using forward Euler as
Tpyl = Tp+ ho, (75)
Unt1 = Up — hip, (76)
but the following alternative
T4l = Tn+ hvggip (77)
Unyljz = Un—1/2 — hay (78)

18

is equivalent to the second order accurate discretization of Eq. 72

Tpil — 2T + Tug1 = (Tpg1 — Zn) — (Tn — Tp1) (79)
= h(vng1/2 = Vn-1/2) (80)
= _hzwn- (81)

The above trick does not work for Hodgkin-Huxley in cases where the v equation is non-
linear in v. For example, one often sets m = mq,(v) to eliminate the fast time scale of m from
the problem and reduce the dimension of the system. Also, treating the driving force linearly is
not always valid, especially for Ca?* currents, where one might use the Goldman-Hodgkin-Katz
formula. Finally, sometimes one uses polynomial-based models like Fitzhugh-Nagumo.

In those cases one must solve the nonlinear equations by iteration or by using Newton’s
method. Since the stiffness of these equations stems from the diffusion terms not the kinetics,
iterative methods converge after a few iterations.

One scheme for iteration is:

2
T n+lp+1l _ ymn) _ 1/_ n+1,p+1 n l . n+1l,p yn+l,p . n yn
- (v V') =575 BV +BV"| 4 3 [Lion (S, V) 4 Lign (57, V)|
(82)
Ts Vn—|—1,p—|—1 1
% (Sn-l—l,li-l—l _ Sn) — 5 [(soo(vn-f—lm-f-l) o Sn-}—l,P-f-l) + (soo(Vn) _ Sn)] (83)
where the equations are iterated for p = 0, 1,... until convergence, and yntl0 — v, Sntl0 —

S™. The linear parts of the right hand side are treated fully implicitly, while the non-linear parts
are treated by predictor-corrector. One tridiagonal system must be solved for each iteration.
Note that the matrix coefficients on the diagonal must be updated with the new values of the
gating variables with each iteration. Often, taking one predictor step and one corrector step
is adequate.

3.6 Higher Dimensions

Although cable problems are inherently one-dimensional, one sometimes needs to solve prob-
lems in two or three space dimensions. Some examples are cardiac wave propagation and Ca?*
diffusion in a round cell. We give just a flavor of the difficulties involved with the simple 2-D
linear problem:

Ut = Ugg + Uyy. (84)
For a unit square region, 0 < z < 1,0 <y < 1, we can let u;; = u(iAz,jAy),4,5 =1,...,J,

or u;; = u(ik, jk) with Az = Ay = k. Note that u;; is to be interpreted as a vector of length
J?, not a matrix. Then the forward Euler discretization of Eq. 84 is

n+l _ . n

h
Uy =it g [(U?H,j — 2ugy + i) + (Ui — 2ug; + uzn,j—l)] (85)

19

or

Untl = (I + :QC> un (86)

where C is now an J? x J? pentadiagonal matrix. If u;j is ordered sweeping row-wise in the
x-direction (like reading a page from bottom to top), C has a structure like

T|I1/O0|0|O
I T(I|O|O
olr|T|1[0 |, (87)
ojo[I|T|1I
Ol0[O|I [T

where the blocks are J x J, I is the identity matrix, O is the zero matrix, and T is a tridiagonal
matrix like B in Eq. (53), but with —4 on the diagonal instead of —2.

The stability condition is h < k?/4. The backward Euler method in the same notation is
then

(I — :—20) Ut =pgn (88)
and Crank-Nicolson is
1h n+1 1h n
I_ikQC U I+§k20 U (89)

These are straightforward generalizations of the 1-D methods, but, unfortunately, if one at-
tempts to solve the above matrix equations by Gaussian elimination, the zero diagonals fill
in, resulting in unfeasibly large storage requirements. There is a vast literature of iterative
methods for solving such matrix equations, but they are slow, especially if one has to resolve
at every time step. The latter will be the case if nonlinear ionic current terms are included in
the PDE because then the diagonal terms of the matrix will change at every time step. An
alternative is the Alternating Direction Implicit (ADI) method of Peaceman and Rachford, in
which one solves two consecutive tridiagonal problems, corresponding to the x and y partial
derivatives. One version [13] goes as follows:

(;:252> urt? = (;:25;) u" (90)
(2k25§> gt = <I+§k252> gr? (91)
where
GU™ = uiyy;— 2ufy+uf
GU™ = ulyg —2uf +ul

In other words, 62 + (5; = C. It can easily be shown (see Appendix) that this splitting of
the 2-D Laplacian operator into successive 1-D Laplacians is equivalent to Crank-Nicolson to
O(h?). Therefore this method has truncation error O(h?) + O(k?) and the same stability as

20

Crank-Nicolson. It also has the desirable feature that in each step (n — n+ %; n—i—% —n+1)J
uncoupled tridiagonal systems are solved, so the method can be easily vectorized or parallelized.
The method can also be extended to 3D. One source for further details is [13].

3.7 Things Left Out

We have covered how to solve space-clamped problems by solving ODEs and how to solve
space and time-dependent PDEs on a single cable. Often one wants to solve on a branched
structure. In an unbranched cable, each node has two neighbors giving the matrix a tri-diagonal
structure. When the cable is branched, however, the nodes at the branch points have at least
three neighbors, introducing far off-diagonal elements. If one is not careful about the order of
the nodes, Gaussian elimination will introduce additional off-diagonal elements, complicating
the solution process. Hines [8] shows how to number the branches and nodes to avoid fill-
in, and also gives the formulas for spatially varying cable properties. Another approach to
branching is that of Mascagni [11]. There one breaks up the structure (a neuron or a network
of neurons) into sub-pieces. First the equations are solved as if the pieces were independent of
each other, and then the solutions are matched at the boundaries. The virtue of this is that
the sub-pieces can be solved efficiently on a vector or parallel computer. In fact, this speeds
up execution so much that it would pay to take a unitary cable and artificially split it up.

21

4 Final Comments

We have surveyed the current wisdom on the best solutions to what might be called the
easy problems. Small systems of ODFE’s, even stiff ones, can be solved very efficiently to
high accuracy. PDE’s are naturally more difficult, but reasonable methods (i.e. second-order
accurate, O(N') work) are available for one-dimensional problems, including branched neurons.
It is of course not difficult to come up with problems that will confound the best algorithms
on the fastest computers, e.g. any problem with stiff kinetics in two or three space dimensions.
We have conciously avoided venturing into these areas, both because of our own limitations
and the limitations of the field as a whole.

In addition to the particular advice we have sprinkled throughout, we conclude here with
some general concepts that are relevant to problems on all scales of difficulty. Numerical
methods are fallible. Some may have considerable artificial intelligence built into them, but
in the end there is no alternative to a deep knowledge of the particular physical problem on
the part of the investigator. General dynamical systems theory can be very helpful because it
categorizes possible and impossible behaviors.

There is no algorithm that solves all problems, and the user must know enough to adapt
the tool to the job. It also pays to solve a problem by more than method. That means supple-
menting numerical methods with analytical methods and also using more than one numerical
method. In addition to catching routine errors, this may uncover very subtle ones. In one
small but illuminating example that we know of, an instability in the dynamical system was
sensitive to numerical error introduced by the Gear method, but not Runge-Kutta, leading to
discovery of a new class of phenomena (Sherman and Rinzel, 1992). No computer program
can be expected to anticipate such cases. Ultimately computational science is isomorphic to
all of science, and can no more than all of science ever be complete.

22

4.1 Appendix
4.1.1 Tridiagonal Systems

Here is the algorithm for solving tridiagonal systems from [10], reproduced for convenience.
The system of equations to solve is

L;V;_1+D;V; +U;Vj1 = Ry, i=12,...,J

with L; = Uy = 0. The “forward elimination” step:

U = Ui/Dy

R = Ri/D;

D, = D;-L;Uj_i, j=2,3,...,J

R; = (R;—L;R;_1)/D;, 7=23,...,J
U, = U;/D; j=2.3...,J-1

The “backward substitution” step:

V, = Ry
Vi, = R;—U;Vip, j=J-1,0-2,...,1

The solution is returned in V; all the other arrays are overwritten. If this is acceptable, only
5 arrays of length J are required. The number of arithmetic operations is O(J), which is
optimal.

4.1.2 ADI Equivalence to Crank-Nicolson
Letting o = %k%, Crank-Nicolson (Eq. 89) is
(I-aC)U™! = (I+aC)U",
while ADI (Eq. 90-91) is
(T-ad2)umt'? = (1+a82)U"
(T—ad2)Umt = (T+ad2) Ui/,

Combining the last two equations gives
(1-as2) Ut = (14 a82) (1-ad2) " (T+ad2) U™
Now, 62 and a2 are O(h), so we can rewrite the above formally as
(1- @) (T ad2) U™ = (T+ ad2) (T+ ad2) U™

23

Expanding gives
(1 —ad?—ad? + 0(h2)) Untl — (1 +ad2 + ad? + O(hz)) un,

which is equivalent to Crank-Nicolson up to O(h?) because C = 42 + 4.

24

5 Exercises

Example files needed for the exercises can be found at http://mrb.niddk.nih.gov/sherman, along
with updated or additional copies of these notes.

1.

If the Earth (taken as a sphere with radius r = 6378 km) were covered with a 1 ym layer
of gold, what would be the increase in surface area [16]? Compare the answers you get if
you a) take the difference in the area before and after or b) use differentials to estimate
the change. Which is more accurate, the exact method or the approximate method?

. Mathematica knows Taylor series: Use the Series function to get the first 4 terms of

Exp[x], Sin[x],and 1/(1 - x) expanded around 0 and f [x] expanded around a. Hint:
you can get the syntax by typing ?Series. Compare the series for Exp[I x] and Cos [x]
+ I Sin[x] (I = Sqrt[-1]).

. You can use xpp to test the precision of your workstation. Write a .dif file to calculate

(1+(0.5)") — 1. Optional: Use Mathematica to calculate the same function and vary the
precision with the N command.

. Given that the error, discretization plus round-off, of a p order method for ODEs is

h? + €menh ™! find the minimum error attainable. What happens to the minimum % as p
increases? The minimum error?

. Consider three methods with global error O(h), O(h?), and O(h*) and requiring 1, 2, and

4 evaluations of f per time step, respectively. Calculate the total number of function
evaluations needed to achieve a global error e for each method.

. Write down analytically the result of one step of RK4 applied to the equation 3y’ = Ay

and show that the local truncation error is O(h%) by comparing with the Taylor series
for e*. Mathematica can help with the algebra.

. Test the accuracy of Euler and RK4 on the equation 4’ = Ay with A > 0 using either

xpp or dstool. Plot or tabulate the error at a fixed time 7" vs. h. Verify that the error
increases exponentially in time with Euler.

. Test forward Euler on 3y’ = Ay with A < 0 and verify that the solution blows up if A is

not small enough. xpp doesn’t have a backward Euler menu item, but you can fake it by
writing out the recursion in a .dif file and using the difference equation solver. You can
compare by doing both forward Euler and backward Euler in the same file.

. The Mathematica command

Do[{y2 = -1.5 y1 + yO; yO = y1; y1 = y2; Print[y2]},{10}] executes the unsta-
ble recursion of the leapfrog method (Eq. 39) 10 times. Test it with yo =14 ¢€,y;1 = 0.5
for various values of € including 0. (Optional: simulate leapfrog with xpp or dstool in
difference equation mode and verify that it is always unstable.)

25

10.

11.

12.

13.

14.

15.

16.

17.

Mathematica can also calculate Eq. 39 recursively. Define £[0] := y0 ; f[1] := y1;
f[n_] := 5/2 f[n-1] - f[n-2] and see how long it takes to evaluate £ [20]. Show that
evaluating f [n] takes F; function evaluations, where F,, is the nth Fibonacci number.
Can you see why recursive algorithms, while elegant, are not commonly used in numerical
work?

Solve the predator-prey system

T = az+bry (92)
= cy+dzy

with parameters a = 0.25,b = —.01,¢ = —1.0,d = .01 and initial conditions z = 80,y =
30. The system will oscillate with these values. Use Euler with a range of step sizes.
Observe the behavior in the z-y phase plane. How small a value of At is needed to get
good answers with Euler? RK47 After finding good numerical parameters, experiment
with different initial conditions. Compare the nature of the oscillations with those of
the system in the file gbc.ode (the model is described in [14]; you can use the default
parameters in the file). Which system is more delicate to integrate numerically? Why?

(Taken from “Orbits Worth Betting On”, Rob Knapp and Stan Wagon, CODEE Newslet-
ter, Winter 1996.) The forced Duffing equation

2" +0.152" — z + 2 = 0.3cos(t)

is bistable between a limit cycle and a chaotic attractor. Compare the sensitivity to
initial conditions when starting from z,z’ = (0.6,1.3) and z,z’' = (—1.0,1.0).

Simulate a voltage clamp with xpp in two ways, with a Heaviside function (using heav())
and with a global flag variable. Try both Runge-Kutta and Gear.

Solve the stiff system (12) with initial conditions z(0) = 1.01,y(0) = —2 using Euler,
RK4, Adams, and Gear. How small does h have to be for each method to avoid insta-
bility? Compare the form the instability takes between methods.

Compare the speed of Adams and Gear on burst.ode with (a) A = 0.9, (b) A = 10, and
() n =neo(v). (Case (c) will require rewriting the system.)

Here is an example of qualitatively wrong answers obtained because h is too big, even
though the solutions look internally consistent. Integrate the file burst.ode with the
given parameters. Establish a gold standard solution with Gear. You should see periodic
bursting with 5 spikes per burst. Examining the V-S phase plane confirms the solution
to be periodic. Rerun with Euler using dt = .1, .5, 1.0. You may also test some of
the other methods to see how big dt can be for them.

This example is worse than the previous one: The problem cannot be fixed by making
the step size smaller. It shows how one can be deceived by a numerical answer that

26

18.

19.

20.

21.

appears to be very accurate unless one knows in advance what the behavior of the
system should be. Integrate the coupled oscillator system in the file gbctwo.ode. Good
parameters are s = 0.15, gc = 0.05 and the rest at their defaults. With initial conditions
v = v2 = =47, n = n2 = .05 the cells will oscillate in phase. Now allow yourself to be
led up the garden path:

e Integrate with RK with dt = 1 for 2000 time units.

e Check your answer with Gear with the default numerical parameters. Verify that
the two methods agree closely.

e Restart with Gear using the Last initial conditions for 2000 more time units. Repeat
several times until you see a new pattern emerge: the cells are now oscillating anti-
phase.

e Run RK for a long time. It will never produce anti-phase oscillations.

e Re-run RK, but perturb the initial condition for v2 to —47.001.
Ponder your observations and try to explain them. Which behavior is the correct one?
Why do the numerical methods differ?
Moral: The computer doesn’t have a brain, but you do.

Since a 2nd derivative is a derivative of a derivative, then it is natural to discretize it as
a difference of a difference. Derive Eq. 49 by starting with Eq. 56 and using

Va (“"j+%) Vs (f”j—%)

Vge(25) = -

See also [6]. Verify that the eigenvalues of B are given by (61) by showing that Bu,, =
AmUm, m=1,...,J (recall that B is J by J) where u,, is the eigenvector

(sinmAz,sin2mAz, ... ,sinJmAz), Az =1/(J +1).

Motivation: The equation Buy, = Auy, is a discretization of the ODE BVP 4" = A\u on
[0,1] with u(0) = u(1) = 0; the u,, are the discrete representations of sin(mz) on the
[0, 1], which are the eigenfunctions of the ODE.

Solve the steady-state cable equation v,, — v = 0 using the boundary value option in
xpp. Let v =1 at £ = 0 and do the cases v =0 and v, =0 at x = L with L = .5,1,2,3.
This reproduces Fig. 21 in Rall’s Handbook of Physiology article. Also do the case of a
constant applied current at £ = 0 with a sealed end at x = 1.

Solve the time-dependent cable equation vy = vz — v, v(0,t) = —1, v,(10,t) = 0,
v(z,0) = 0 using xtc. Write your own input file or use the file cable.xtc. Choose
50 grid points, so that & = 0.2. Test the forward Euler stability condition, Eq. 63.
Observe in the unstable cases that the fastest Fourier component dominates after a few

27

22.

23.

time steps. Also try backward Euler, Runge-Kutta, and Gear. You can also use the
steady-state solution obtained with the boundary value solver of xpp as a check on the
solution at ¢ = 20.

Minimize the error for either forward or backward Euler for PDEs for a given amount of
work. Take the error to be ah + bk%. The work is inversely proportional to the number

of grid points and to the number of time steps, so estimate it as %

The backward differentiation methods (Eg. 43) can be written in terms of the backward
difference operator,
VYn =Yn = Yn—1,

and the differentiation operator, D. Backward Euler is then

Vynr1 = hDynir. (93)
Rewriting Eq. 7 as
ehD — 1
1-V’
Eq. 93 can be expanded formally as
v: v
Vi1 = <V+7+?+...> Yn+1-

Higher-order methods are then obtained by matching more terms of the infinite series.
The second-order method is

2
(V + %) Yn+1 = hf(yn—l-l)-

Show that this is equivalent to

4 1

2
Yn+l = §yn - gyn—l + ghf(yn+1)-

28

References

1]

2]

[11]

[12]

[13]

[14]

[15]

B. Ermentrout. PhasePlane: The Dynamical Systems Tool Version 3.0. Brooks/Cole,
Pacific Grove, California, 1990.

R. Feynman. The Feynman Lectures on Physics. Addison-Wesley, Redwood City, CA,
1963.

T. C. Gard. Introduction to Stochastic Differential Equations. Marcel Dekker, New York
and Basel, 1988.

C. W. Gear. The numerical integration of ordinary differential equations. Math. Comp.,
21:146-156, 1967.

C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations.
Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

G. H. Golub and J. M. Ortega. Scientific Computing and Differential Equations. Academic
Press, Boston, 1992.

D. Hansel, G. Mato, C. Meunier, and L. Neltner. On numerical simulations of integrate-
and-fire neural networks. Neural Comput., in press:xx—xx, 1997.

M. Hines. Efficient computation of branched nerve equations. Int. J. Bio-Medical Com-
puting, 15:69-76, 1984.

R. J. MacGregor. Neural and Brain Modeling. Academic Press, San Diego, 1987.

M. V. Mascagni. Numerical methods for neuronal modeling. In C. Koch and I. Segev,
editors, Methods in Neuronal Modeling, pages 439—484. The MIT Press, Cambridge, Mas-
sachusetts, 1989.

M. V. Mascagni. A parallelizing algorithm for computing solutions to arbitrarily branched
cable neuron models. J. Neurosci. Methods, 36:105-114, 1991.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering. Numerical Recipes.
Cambridge University Press, Cambridge, second edition, 1992.

R. D. Richtmyer and K. W. Morton. Difference Methods for Initial-Value Problems.
Interscience Publishers, New York, 1967.

A. Sherman and J. Rinzel. Rhythmogenic effects of weak electrotonic coupling in neuronal
models. Proc. Natl. Acad. Sci., 89:2471-2474, 1992.

G. D. Smith. Numerical Solution of Partial Differential Equations: Finite Difference
Methods. Oxford University Press, Oxford, 1985.

29

[16] C. F. Van Loan. Using examples to build computational intuition. SIAM News, 28(8):1,
1995.

[17] S. Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addison-
Wesley, Redwood City, CA, 1991.

30

