
MIT Department of Brain and Cognitive Sciences 
9.29J, Spring 2004 - Introduction to Computational Neuroscience 
Instructor: Professor Sebastian Seung 

Matching and maximizing are two ends of a 
spectrum of policy search algorithms 

January 2, 2004 

Abstract 

According to the matching law, when an animal makes many repeated choices 
between alternatives, its preferences are in the ratio of the incomes derived from 
the alternatives. Because matching behavior does not maximize reward, it has 
been difficult to explain using optimal foraging theory or rational choice theory. 
Here I show that matching and maximizing can be regarded as two ends of a spec­
trum of policy search algorithms from reinforcement learning. The algorithms are 
parametrized by the time horizon within which past choices are correlated with 
present reward. Maximization corresponds to the case of a long time horizon, 
while matching corresponds to a short horizon. From this viewpoint, matching is 
an approximation to maximizing, with the advantage of faster learning and more 
robust performance in nonstationary environments. Between these two ends of the 
spectrum lie many strategies intermediate between matching and maximizing. 

If an animal’s relative preferences for alternatives are in the ratio of the incomes 
derived from them, then its behavior is said to be “matching.” Matching behavior has 
been observed for certain types of reinforcement schedules, in particular those that 
randomize the interval between reward. The matching law was important because it 
gave the law of effect a quantitative formulation. 

Given the matching law as an empirical observation about behavior, two questions 
immediately come to mind. The first question is functional: why is matching a good 
policy for animals to follow? The second is mechanistic: what neural mechanisms un­
derlie the production of matching behavior? This note mainly addresses the first ques­
tion, by elucidating the function of matching from the viewpoint of the mathematical 
theory of reinforcement learning. However, the second question is also peripherally ad­
dressed through mathematical developments that are shared by recent neural network 
models of matching behavior. 

One of the most common ways to explain the function of a behavior is to argue that 
it has been adapted by evolution to be optimal. Such an explanation for matching has 
been elusive, because matching does not generally maximize the animal’s overall rate 
of reward. In this respect, the matching law is suboptimal. This enables it to be used as 
an explanation for “irrational” human behaviors, such as addiction and other behaviors 
attributed to lack of “self­control.” Nevertheless, it would be hasty to completely reject 
optimality as an explanation of matching. Often matching is close to optimal, even if it 
is not exactly so. 
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The purpose of this note is to point out that matching and maximizing are two ends 
of a spectrum of behaviors generated by the REINFORCE class of machine learning 
algorithms. Such algorithms learn by correlating past actions with reward, through 
an eligibility trace that maintains a memory of past actions. The time constant of 
the eligibility trace is an important parameter of the learner. If the time constant is 
sufficiently long, then the learner converges to maximizing behavior. On the other 
hand, if the time constant is extremely short, then the learner converges to matching 
behavior. This type of behavior is similar to the melioration model of Herrnstein, 
Prelec, and Vaughan []. 

Why would a learner pursue a strategy that converges to matching rather than max­
imizing? In general, a bias­variance tradeoff is inherent to REINFORCE algorithms. 
They work by computing a stochastic approximation to the gradient of the expected 
reward. When the time constant of the eligibility trace is long, the bias of the gradient 
estimate is small, but the variance is large. Reducing the time constant of the eligibility 
trace increases the bias but decreases the variance, and can therefore be advantageous 
for fast learning and robust performance in nonstationary environments. 

1 The matching law 

Suppose that an animal is presented with repeated choices between two actions. For 
simplicity, it’s assumed that the choices occur in discrete trials, though many matching 
experiments have been performed using continuous time. This section defines some 
notation, and uses it to express the matching law in mathematical form. 

The action taken in trial t is indicated by the binary variables at and ̄at, which 
satisfy at + āt = 1. After each action, the animal receives reward ht. The average 
income derived from action a is 

1 
T

H = htat
T 

t=1 

Similarly, the average income derived from action ā is 

1 
T

¯ ¯H = htat
T 

t=1 

The frequencies of actions a and ̄a are respectively 

f = 
1 
T 

T� 
at 

¯ f = 
1 
T 

T� 
āt 

t=1 t=1 

and satisfy f + ¯ f = 1. 
According to the matching law, the frequencies are in the same ratio as the incomes, 

¯ H H 
= ¯f f 
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Equivalently, the matching law can be stated as equality of the returns from the two 
actions, where the return from action a is defined as H/f , the reward averaged only 
over those trials in which action a was chosen. 

2 Matching is not equivalent to maximizing 

In the field of reinforcement learning, a method of choosing actions is called a policy. 
Is matching an optimal policy? 

To address this question, we consider the class of policies in which actions a and ̄a 
are chosen with probabilities p and p̄ respectively, with p + p̄ = 1. Each trial’s action is 
assumed to be statistically independent of previous trials. This case is easy to analyze; 
generalization to more complex policies is left to the technical appendix. 

¯For the policy indexed by p, we define H(p) and H(p) as the incomes derived from 
the two actions, averaged over time. It is assumed that the reward process has some 
sort of statistical stationarity, so that these time averages are well­defined. 

The total average income is given by the sum H(p)+ ¯ H(p), and the optimal policy 
is found by maximizing with respect to p. Assuming smoothness, the optimal p should 
be a stationary point of the sum, assuming that it is strictly between 0 and 1. This 
means that 

¯ ¯ dH dH dH 
=

dp 
− 

dp 
= 

dp̄

In other words, the optimal p is given by the condition that the marginal incomes 
¯ dH/dp and dH/dp̄ are equal. In general, this is not the same as the matching law, 

¯which is the condition that the returns H/p and H/p̄ are equal. In short, matching is 
not typically the same as maximizing. 

3 REINFORCE learning 
¯Suppose that the learner does not know the functions H(p) and H(p), so it cannot 

compute the optimal p directly. Based on observations of its actions and rewards, how 
can the learner find the optimal p? One method is provided by the REINFORCE class 
of learning rules, which are an important class of policy search algorithms. 

Define the eligibility at trial t to be 

¯et = p̄tat − ptat (1) 

This is positive for action a and negative for action ā, with zero mean. 
The eligibility trace is a short­term memory of recent eligibilities, and can be de­

fined in various ways. For example, it could be the sum of recent eligibilities, 

τc

êt = et−τ 

τ =0 

This will be called “sharp discounting,” because of the sharp cutoff at τ = τc. This 
parameter will be called the consequential horizon, because it determines the temporal 
range over which the learner correlates actions with their consequences. 
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Or the eligibility trace could be the infinite series 

∞

êt = βτ et−τ 

τ =0 

where the discount factor 0 ≤ β < 1 makes past eligibilities count less. This exponen­
tially discounted eligibility trace can be computed in an “online” way by 

êt = êt−1 + βet 

For either type of discounting, the learning rule is 

Δqt = ηhtêt 

where η > 0 is the learning rate, and the log odds q = log(p/p̄) is the learned param­
eter. This is related to p by the monotone increasing function, p = 1/(1 + exp(−q)). 
The choice of q as the learned parameter is advantageous for a number of reasons. One 
is that it implements the constraint that p must lie between 0 and 1. 

4 How it works 

For an intuitive explanation of how the learning rule works, consider the case of sharp 
discounting. If the probability p is fixed, then the eligibility trace ê is equal to (τc + 
1)(f − p), where f is the frequency with which action a was chosen in the last τc + 1 
trials. This is the deviation between the actual and expected number of a actions. 
Suppose that positive reward is received. If action a was chosen more times than ex­
pected, then p is increased. If action a was chosen fewer times than expected, then 
p is decreased. Intuitively, by monitoring how reward is correlated to fluctuations in 
the frequency of action a, the learner is sensitive to the marginal incomes, and such 
sensitivity is necessary for finding the optimal policy. 

5 Maximizing behavior 

There are some theoretical assurances that REINFORCE learning rules do indeed max­
imize average reward, though these assurances are not unconditional guarantees. For 
example, Baxter and Bartlett have proved the following result []. Suppose that the 
world plus learner forms an ergodic Markov chain. If q is held fixed. then the time 

¯average of htêt is approximately equal to the derivative of the average income H + H 
with respect to p. This implies that the learning rule is driven by a stochastic approx­
imation to the gradient, and therefore tends to change q in the direction that increases 
the average income. 

The gradient approximation contains two types of error, systematic bias and ran­
dom variance. The bias vanishes in the limit of β → 1 or τc →∞, which corresponds 
to an eligibility trace with infinite time scale. However, the variance diverges in this 
limit. Therefore it is best to use a finite time scale, to reduce the variance at the ex­
pense of increasing the bias. The bias will be small, as long as the time scale is much 
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longer than the mixing time of the Markov chain. Reducing variance has the effect of 
speeding up the initial stages of learning, but makes the final policy suboptimal. 

6 Matching behavior 

The previous section discussed the case of a long time scale for the eligibility trace. 
The opposite extreme is to make this time scale as short as possible, β = 0 or τc = 0. 
Then the eligibility trace is equal to the present eligibility, êt = et, and the learning 
rule takes the form 

Δq = ηhtet (2) 

ptat − ptat) (3)= ηht(¯ ¯


= ηht(at − pt) (4)


Suppose that the learning rule approaches some stationary probability density as time 
increases. In the limit of small η, this stationary density will be concentrated around a 
value of q satisfying �htet� = 0. Substituting the expression (1) yields 

¯�htat� �htat�= 
p p̄

¯ ¯The quantities �htat� and �htat� are the average incomes H and H. They are in the 
same ratio as the action probabilities, which is precisely the matching law. 

There are some equivalent ways of writing the learning rule (2). For example, 
suppose that the learner maintains two numbers z and z̄, which are unnormalized prob­
abilities, so that the choice probabilities are 

z z̄
p = p̄ = 

z + ¯ z + ¯z z 

Then the learning rule can be written as a multiplicative update 

zt+1 = zt exp(ηp̄thtat) z̄t+1 = ¯ at)zt exp(ptht ̄

To prove this, simply compute the log odds q = log(z/z̄) 
Alternatively, suppose that the learner maintains two numbers u and ̄u, determining 

the choice probabilities via 
u ūe e 

p = 
u 

p̄ = 
eu + e ̄eu + e ̄ u 

Then the learning rule can be written as an additive update 

Δut = ηp̄thtat Δ¯ atut = ηptht ̄

A modification of (2) is to make the update directly in p, rather than in the log odds 
q. 

Δpt = ηhtet = ηht(at − pt) 

If ht, η ≤ 1, then this respects the constraint 0 < p < 1. Then the above additive 
learning rule holds with 

up = u − ¯
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7 Questions for further research 

The two extreme cases τc = 0 and τc →∞ were considered above. What happens for 
intermediate τc? For example, suppose that τc = 1. Then the learning rule is 

Δθ = ηht(et + et−1) 

The stationary point satisfies �htet�+ �htet−1� = 0, which implies that 

¯ ¯�htat�+ �htat−1� �htat�+ �htat−1�= 
p p̄

This deviates from matching. Can we characterize exactly how? 
Suppose that the actions are generated by a Markov chain, instead of being statisti­

cally independent from previous trials. How does these results generalize? 

A REINFORCE for n actions 

For simplicity, the main text assumed that there are only two possible actions, and that 
the learned parameter was the log odds of the two actions. More generally, there could 
be n actions, and the probability vector might be parametrized in some other way. 

Suppose that action ai has probability pi, where i runs from 1 to n. The probability 
vector is parametrized by the m­dimensional vector θ. Let � denote the gradient with 
respect to θ. Then the eligibility is defined by 

� ai 
t et = 

pi 
�p i 

i 

and the eligibility trace êt is similar to before. The REINFORCE learning rule is 

Δθ = ηhtêt 

where η > 0 is the learning rate and ht is the reward in trial t. 

B Matching behavior for n actions 
iDefine the m × n matrix Aαi = �αp . We’ll have to assume that the rank of this 

matrix is n − 1, in order to derive matching behavior. This assumption is important, 
because it guarantees that any vector vi satisfying i Aαivi = 0 is proportional to 
the vector of all ones. To see this, note that i Aαi = 0 follows from differentiation 
of the identity i p

i = 1, and apply the fundamental theorem of linear algebra. The 
assumption should hold generically, provided that θ contains n−1 or more parameters. 

Suppose that the learning rule depends only on the present eligibility, 

Δθ = ηhtet 
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Then a stationary point satisfies �htet� = 0, or � Hi 

pi 
�p i = 0 

i 

iwhere Hi = �htat� is the average income derived from action i. Therefore the vector 
Hi/pi should be proportional to the vector of all ones, which is the matching law. 
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