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Abstract
According to the matching law, when an animal makes many repeated choices

betweenalternativesits preferencesirein the ratio of the incomesderivedfrom
the alternatives. Becausematchingbehaviordoesnot maximizereward, it has
beendifficult to explainusingoptimal foragingtheory or rationalchoicetheory.
Herel showthatmatchingandmaximizingcanberegardedastwo endsof aspec-
trum of policy searchalgorithmsfrom reinforcementearning. Thealgorithmsare
parametrizedy the time horizonwithin which pastchoicesare correlatedwith
presentreward. Maximization correspondgo the caseof a long time horizon,
while matchingcorresponds$o a shorthorizon. Fromthis viewpoint, matchingis
an approximationto maximizing, with the advantagef fasterlearningandmore
robustperformanceén nonstationargnvironmentsBetweerthesetwo endsof the
spectrum lie many strategies intermediate betwaatching and maximizing.

If ananimal'srelative preferencegor alternativesarein the ratio of the incomes
derivedfrom them,thenits behavioris saidto be “matching.” Matchingbehaviorhas
beenobservedfor certaintypesof reinforcementschedulesjn particularthosethat
randomizethe interval betweenreward. The matchinglaw wasimportantbecauset
gave the law of effect a quantitative formulation.

Giventhe matchinglaw asanempiricalobservatioraboutbehaviortwo questions
immediatelycometo mind. The first questionis functional: why is matchinga good
policy for animalsto follow? Theseconds mechanisticwhatneuralmechanismsin-
derliethe productionof matchingbehavior?This notemainly addressethefirst ques-
tion, by elucidatingthe function of matchingfrom the viewpoint of the mathematical
theoryof reinforcementearning.However thesecondjuestioris alsoperipherallyad-
dressedhroughmathematicatlevelopmentshat are sharedby recentneuralnetwork
models of matching behavior.

Oneof themostcommonwaysto explainthefunctionof abehavioris to arguethat
it hasbeenadaptedy evolutionto be optimal. Suchan explanatiorfor matchinghas
beenelusive,becausenatchingdoesnot generallymaximizethe animal’'soverallrate
of reward.In thisrespectthe matchinglaw is suboptimal.This enablest to beusedas
anexplanatiorfor “irrational” humanbehaviorssuchasaddictionandotherbehaviors
attributedto lack of “self-control.” Neverthelesst would be hastyto completelyreject
optimality asanexplanatiorof matching.Oftenmatchingis closeto optimal,evenif it
is not exactly so.



The purposeof this noteis to point outthatmatchingandmaximizingaretwo ends
of a spectrumof behaviorsgeneratedy the REINFORCEclassof machinelearning
algorithms. Suchalgorithmslearn by correlatingpastactionswith reward, through
an eligibility tracethat maintainsa memory of pastactions. The time constantof
the eligibility traceis animportantparameteiof the learner. If the time constantis
sufficiently long, then the learnerconvergeso maximizing behavior. On the other
hand,if the time constantis extremelyshort,thenthe learnerconvergego matching
behavior. This type of behavioris similar to the melioration model of Herrnstein,
Prelec, and Vaughan [].

Why would alearnermursuea strategythatconvergeso matchingratherthanmax-
imizing? In general,a bias-variancdradeoffis inherentto REINFORCEalgorithms.
They work by computinga stochasticapproximationto the gradientof the expected
reward.Whenthetime constanbf theeligibility traceis long, the biasof the gradient
estimatds small,butthevariances large. Reducinghetime constanbf theeligibility
traceincreaseshe biasbut decreasethe variance andcanthereforebe advantageous
for fast learning and robust performance in nonstationary environments.

1 The matching law

Supposehatan animalis presentedvith repeatecchoicesbetweentwo actions. For
simplicity, it's assumedhatthe choicesoccurin discretetrials, thoughmanymatching
experimentshavebeenperformedusing continuoustime. This sectiondefinessome
notation, and uses it to expreb® matching law in mathematical form.

The actiontakenin trial ¢ is indicatedby the binary variablesa; anda;, which
satisfya; + a; = 1. After eachaction,the animalreceivesrewardh;. The average
income derived from actioa is
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Similarly, the average income derived from actiois
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and satisfy f+ f = 1.
Accordingto thematchingaw, thefrequenciesrein thesameratioastheincomes,
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Equivalently,the matchinglaw canbe statedas equality of the returnsfrom the two
actions,wherethe returnfrom actiona is definedas H/ f, the rewardaveragednly
over those trials in which action a was chosen.

2 Matching is not equivalent to maximizing

In thefield of reinforcementearning,a methodof choosingactionsis calleda policy.
Is matching an optimal policy?

To addresshis questionwe considerthe classof policiesin which actionse anda
arechoserwith probabilitiesp andp respectivelywith p 4+ p = 1. Eachtrial’'s actionis
assumedo be statisticallyindependenof previoustrials. This cases easyto analyze;
generalization to more complex policies is left to the technical appendix.

Forthepolicy indexedoy p, we defineH (p) and H (p) astheincomesderivedfrom
the two actions,averagedvertime. It is assumedhatthe rewardprocesshassome
sort of statistical stationarity, so that these time averages are well-defined.

Thetotal averagéncomeis givenby thesumH (p) + H (p), andthe optimalpolicy
is foundby maximizingwith respecto p. Assumingsmoothnessheoptimalp should
be a stationarypoint of the sum, assumingthatit is strictly between0 and1. This
means that _ _

dH dH dH

dp — dp  dp
In other words, the optimal p is given by the condition that the marginalincomes
dH/dp anddH /dp areequal. In general,this is not the sameas the matchinglaw,
which is the conditionthatthe returnsH /p and H /p areequal. In short,matchingis
not typically the same as maximizing.

3 REINFORCE learning

Supposethat the learnerdoesnot know the functions H (p) and H(p), soit cannot
computetheoptimalp directly. Basedon observation®f its actionsandrewards how
canthelearnerfind the optimal p? Onemethodis providedby the REINFORCEclass
of learning rules, which are @mportant class of policy search algorithms.

Define the eligibility at trial ¢ to be

et = Prar — Pray (1)

This is positive for actior and negative for actioa, with zero mean.
The eligibility traceis a short-termmemoryof recenteligibilities, andcanbe de-
fined in various waysk-or example, it could be the sum of recent eligibilities,
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This will be called“sharpdiscounting,”becausef the sharpcutoff at 7 = 7.. This
parametewill becalledtheconsequentighorizon,becausét determineshetemporal
range over which the learner correlates actions with their consequences.



Or the eligibility trace coulde the infinite series
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wherethediscountfactor() < g < 1 makegpasteligibilities countless.This exponen-
tially discounted eligibilitytrace can be computed in an “online” way by

€t = €1+ Pey
For either type of discounting, the learning rule is
Aqy = nhyéy

wheren > 0 is thelearningrate,andthelog oddsq = log(p/p) is thelearnedparam-
eter. Thisis relatedto p by the monotonencreasingunction,p = 1/(1 + exp(—q)).
Thechoiceof ¢ asthelearnedparameteis advantageoufr anumberof reasonsOne
is that it implements the constraint that p must lie between 0 and 1.

4 How it works

For anintuitive explanatiorof how thelearningrule works, considerthe caseof sharp
discounting.If the probability p is fixed, thenthe eligibility traceé is equalto (7. +

1)(f — p), wheref is thefrequencywith which actiona waschoserin thelastr, + 1

trials. This is the deviationbetweenthe actualand expectednumberof a actions.
Supposeéhat positiverewardis received.If actiona waschosemrmoretimesthanex-
pected,thenp is increased.If actiona waschosenfewer timesthanexpectedthen
p is decreasedIntuitively, by monitoringhow rewardis correlatedo fluctuationsin

the frequencyof actiona, the learneris sensitiveto the marginalincomes,and such
sensitivity is necessary for finding the optimal policy.

5 Maximizing behavior

TherearesometheoreticabssurancethatREINFORCEearningrulesdoindeedmax-
imize averagereward,thoughtheseassuranceare not unconditionalguaranteesFor
example,Baxter and Bartlett have provedthe following result[]. Supposethat the
world plus learnerforms an ergodicMarkov chain. If ¢ is held fixed. thenthe time
averageof h.é, is approximatelyequalto the derivativeof theaverageéncomeH + H
with respecto p. Thisimpliesthatthelearningrule is drivenby a stochasti@pprox-
imationto the gradient,andthereforetendsto changey in the directionthatincreases
the average income.

The gradientapproximationcontainstwo typesof error, systematidiasandran-
domvariance.Thebiasvanishesn thelimit of 5 — 1 or 7. — oo, which corresponds
to an eligibility tracewith infinite time scale. However,the variancedivergesin this
limit. Thereforeit is bestto usea finite time scale,to reducethe varianceat the ex-
penseof increasinghe bias. The biaswill be small, aslong asthetime scaleis much



longerthanthe mixing time of the Markov chain. Reducingvariancehasthe effect of
speeding up the initial stage$learning, but makes the final policy suboptimal.

6 Matching behavior

The previoussectiondiscussedhe caseof a long time scalefor the eligibility trace.
The oppositeextremeis to makethis time scaleasshortaspossible,5 = 0 or 7. = 0.
Thenthe eligibility traceis equalto the presenteligibility, é; = e;, andthe learning
rule takes the form

Agq = nhe (2)
= nhi(Pras — piay) 3)
= nhi(ar —pr) (4)

Supposéhatthe learningrule approachesomestationaryprobability densityastime
increaseslin thelimit of smalln, this stationarydensitywill be concentrateérounda
value of gsatisfying(h;e;) = 0. Substituting the expression (1) yields
(heae) _ (hedy)
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The quantities(h;a;) and (h;a;) arethe averagencomesH and H. Theyarein the
same ratio as the action probabilities, which is precisely the matching law.

There are someequivalentways of writing the learningrule (2). For example,
supposéhatthelearnemaintainsgwo numbers: andz, whichareunnormalizegrob-
abilities, so that the choice probabilities are

z _ z
24z p_z+2

Then the learning rule can be written as a multiplicative update

p:

Zi41 = zeexp(npihiay) Zey1 = Zpexp(piheay)

To prove this, simply compute the log odds=glog(z/Z)
Alternatively,supposéhatthelearnemaintaingwo numbers: andu, determining
the choice probabilities via

u u

e e
eu+eﬂ eu+eﬂ

Then the learning rule can be written as an additive update

D= D=

Auy = npihiay Aty = npihiay
A modificationof (2) is to maketheupdatedirectly in p, ratherthanin thelog odds

Apy = nhier = nhi(ar — py)
If he,n < 1, thenthis respectdhe constraint) < p < 1. Thenthe aboveadditive
learning rule holds with
p=u—1u



7 Questions for further research

Thetwo extremecases . = 0 and7. — oo wereconsiderecbove . Whathappengor
intermediate z? For example, suppose that= 1. Then the learning rule is

AO = nhi(er +et—1)
The stationary point satisfiéd,e,) + (hie;—1) = 0, which implies that

(heag) + (heag—1)  (heag) + (hey—1)

p P

This deviates from matchingcan we characterize exactly how?
Supposghatthe actionsaregeneratedy a Markov chain,insteadof beingstatisti-
cally independent from previousals. How does these results generalize?

A REINFORCE for n actions

For simplicity,the main texassumed thahere are onlywo possible actiongnd that
thelearnedparametewasthelog oddsof thetwo actions.More generallytherecould
be n actions, and the probability vector might be parametrized in some other way.

Supposéghatactiona’ hasprobabilityp?, wherei runsfrom 1 to n. Theprobability
vectoris parametrizedby the m-dimensionalectorf. Let V denotethe gradientwith
respect to 6 Then the eligibility is defined by

7
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and the eligibility trace; is similar to beforeThe REINFORCE learning rule is

A = T]ht ét

where 7> 0 is the learning rate antd, is the reward in trial ¢.

B Matching behavior for n actions

Definethe m x n matrix A,; = Va.p'. We'll haveto assumehat the rank of this

matrix is n — 1, in orderto derive matchingbehavior. This assumptioris important,

becauset guaranteeshat any vectorv; satisfying) >, A.;v; = 0 is proportionalto

the vectorof all ones.To seethis, notethat) ., A,; = 0 follows from differentiation

of theidentity >, p’ = 1, andapply the fundamentatheoremof linearalgebra.The

assumptiorshouldhold genericallyprovidedthatf contains: — 1 or moreparameters.
Suppose that the learning rudepends only on the present eligibility,

Ab = T]ht €t



Then a stationary point satisfiés;e;) = 0, or
H_
> V=0
b

whereH; = (h;al) is the averagéncomederivedfrom actioni. Thereforethe vector
H;/p; should be proportional to theector of all ones, which is the matching law.



