
MIT Department of Brain and Cognitive Sciences 
9.29J, Spring 2004 - Introduction to Computational Neuroscience 
Instructor: Professor Sebastian Seung 

The Hopfield model 

Sebastian Seung 

9.641 Lecture 15: November 7, 2002 

1 The Hebbian paradigm 

In his 1949 book The Organization of Behavior, Donald Hebb predicted a form of 
synaptic plasticity with the following property 

When an axon of cell A is near enough to excite a cell B and repeatedly 
or persistently takes part in firing it, some growth process or metabolic 
change takes place in one or both cells such that A’s efficiency, as one of 
the cells firing B, is increased. 

In 1973, the phenomenon of long-term potentiation (LTP) was discovered. The study of 
LTP is now a small industry within the field of neuroscience. Among the various forms 
of LTP, those that depend on the NMDA subtype of glutamate receptor are regarded 
as “Hebbian.” These forms depend on temporal contiguity of presynaptic and postsy­
naptic activity. The requirement of temporal contiguity is expressed in the following 
ditty 

Neurons that fire together, wire together. 
Neurons that fire out of sync, fail to link. 

Hebbian synaptic plasticity is remarkable for having been predicted on theoretical 
grounds well before it was discovered experimentally. This is not a common occur­
rence in biology. 

How did Hebb make his remarkable prediction? He was motivated by an old tra­
dition in Western thought known as associationism. This is the idea that the brain is 
nothing more than an engine for storing and retrieving associations. In the late 19th 
century, it was found that the brain consisted of neurons connected by an intricate web 
of synapses. This transformed the older associationist tradition into connectionism, 
the doctrine that associations are stored as synaptic connections. This is an example 
of the idea that structure determines function in biology. Hume and other empiricist 
philosophers had already expressed the idea that associations were learned from tem­
poral contiguity. It only stood to reason that connections should also be learned from 
temporal contiguity. 

While these ideas are very suggestive, they are admittedly rather vague and metaphor­
ical. The challenge of connectionism is to make these ideas precise. 

A number of theorists have formulated neural network models with the goal of 
explaining how Hebbian synaptic plasticity could be used to store memories. 

1 



� � 
� 

� 

� 
�µ �µ 

2 

3 

Binary model neurons 

For the most part, we have studied neural network models in which the activity of each 
neuron is described by a single analog variable. A more drastic simplification is to 
use binary neurons, which are either active (si = 1) or inactive (si = −1). In such a 
dynamics, each neuron updates itself according to the rule 

i = sgn 

⎝
� Wij sj , (1)s

j 

where s� is the state of neuron i after the update. Note that sometimes s� = si, in which i i 
case the update results in no change. If the argument of the sgn function happens to be 
zero, there is an ambiguity to the definition, which could be resolved by a coin flip or 
arbitrarily defining sgn(0) = 1. 

Equation (1) can be used to define several types of network dynamics, depending 
on the exact manner in which it is applied. In a sequential dynamics, the neurons are 
updated one at a time, typically in a random order. In a parallel dynamics, Eq. (1) is 
applied to all neurons simultaneously. It is often easier to prove theorems about the 
sequential case, but the parallel case is sometimes easier to implement (for example in 
MATLAB it is more natural). 

In a simulation on a digital computer, it is natural to make the updates at discrete 
times. However, the update times could in principle be continuous. For example, they 
could occur at random for each neuron according to a Poisson process with some mean 
rate. 

As we shall see, all these version of network dynamics behave qualitatively the 
same in general, but there can be subtle differences. 

Hopfield model 

Suppose that synapses change according to the learning rule 

�Wij = �sisj 

where � > 0 is a learning rate. This could be called Hebbian, although it has some 
weird features. The synapse is potentiated if both neurons are active, or both are inac­
tive. The synapse is depressed if one neuron is active, and the other is inactive. 

Suppose further that the network is exposed to P binary patterns �i 
1, . . . , �P duringi 

a training phase. More specifically, the state si is set to each pattern in turn, and the 
synaptic weights are changed by the Hebbian update. If Wij = 0 at the beginning of 
the training phase, Hebbian learning will result in 

Wij = 
1 
N 

µ 

(2)i j 

The prefactor 1/N corresponds to a particular choice of learning rate � = 1/N . It is a 
convenient choice for the calculations we are about to perform, but is otherwise arbi­

2 



� � 
� 

� 

� �
� 

�

� 

� 

� 
�

4 

trary, as Wij can be multiplied by any positive prefactor without affecting the dynamics 
(1). 

This synaptic weight matrix is the famous Hopfield model, along with the dynamics 
(1), and the assumption that the patterns are chosen at random. This last assumption 
makes sense if we assume that there is a data compression stage that encodes sensory 
data efficiently before it reaches the Hopfield network. 

In his original paper, Hopfield set the diagonal terms of the weight matrix to be 
zero (Wii = 0). If this is not done, the dynamics takes the form 

i = sgn 

⎝
�

ij sj ,i + W
P 

s s
N 

j,j=i� 

The network still basically works, but there are some subtle differences, which we will 
discuss later. 

As we shall see in the following, the Hopfield model functions as an associative 
memory, because the patterns are stored as dynamical attractors. If the network is ini­
tialized with a corrupted or incomplete version of a pattern, convergence to an attractor 
can recall the correct pattern. 

Single pattern 

Let’s start with a simple case, a single pattern 

1 
Wij = �i�j (3)

N 

The dynamics takes the form 
⎝
� 1 

ji = sgn s j si 
N 

j 

In terms of the overlap 
1 

m = j sj
N 

j 

between � and s, we can write 
si
� = sgn (�im) 

Since m = 1 when s = �, it is a steady state of the dynamics. Similarly, m = −1 when 
s = −�, so it is also a steady state of the dynamics. If m > 0, updates can only cause 
m to increase. Likewise if m < 0, updates can only cause m to decrease. Therefore 
these steady states are attractors of the dynamics. 

3 



� � � 
�µ �µ �� 

� � 
�µ �µ �� 

�� 
� � 

� 

� 

�� 
� 

� 

� 

5 Many patterns 

The case of many patterns is more interesting. The weight matrix (2) is just the su­
perposition of single pattern outer products (3). The danger here is that the patterns 
might interfere with each other. If the patterns were exactly orthogonal to each other, 
there would be no interference. If they are chosen randomly, there is some possibility 
of crosstalk, which is quantified below. 

To check whether the patterns are steady states, we calculate 

Wij �j
� =

1 
(4)i	 j jN 

j,j=i j,j=i µ�	 � 

�� +
1 

i (5)i	 j j = 
N 

j,j=i µ,µ=�� � 

i 

⎝
� �i

µ�i
� �j

µ�j
� (6)

1 
1 + = 

N 
j,j=i µ,µ=�� � 

The last term is called the crosstalk or interference term. If it is greater than −1 for all 
i, then the �th pattern is a steady state 

i = sgn 

⎝
� Wij �j

� 

j 

If we try to store too many patterns, then the interference between them becomes large, 
and storage is not possible. 

To study the stability of a pattern, imagine that the network is initialized at the 
pattern, and try to estimate how many bit flips take place. We can approximate the 
crosstalk term as the sum of Np independent coin flips. There is an error when the sum 
is more negative than −N . The derivation in the book uses the Gaussian approximation 
to the binomial distribution. We will do something coarser, which is the Hoeffding 
bound on the deviation between frequency and probability. According to the one-sided 
Hoeffding bound for m coin tosses 

Prob[p̂ < p − �] < exp(−2�2 m) 

Here we are interested in deviations of the frequency of heads from 1 
2 by more than 2p . 

We find that ⎞ ⎛
N 

Perror < exp(−2Np(1/2p)2) = exp − 
2p 

There are several definitions of capacity. 

•	 (fraction of bits are corrupted, Perror < 0.01) Suppose that we would like less 
than one percent of the bits corrupted. Then we need exp(−N/(2p)) < 0.01, or 
p < −N/(2 log(0.01)) = 0.11N . The problem with this calculation is that the 
flipping of the first bits could cause an avalanche. In reality, the capacity is about 
p = 0.14N . Calculating this number requires some heavy mathematics, like the 
replica trick. 

4 

1 



6 

•	 (fraction of patterns are corrupted, Perror < 0.01/N ) We could impose a more 
stringent requirement, which is than less than one percent of the patterns have a 
bit corrupted. 

N 
p = 

2 log N 

•	 (fraction of samples are corrupted, Perror < 0.01/(pN ). The most stringent 
requirement is that no pattern in the sample is corrupted, with confidence greater 
than 99%. Taking log p � log N , we obtain 

N 
p = 

4 log N 

Is this good? According to the Cover argument, the maximum should be p = 2N . 
We can store patterns as attractors of the network dynamics (with some corruption). 

However, there can be other attractors, or spurious states. These are of three types. 

•	 There are reversed states −� due to the ± symmetry of the network dynamics. 

•	 There are mixture states, which are a superposition of an odd number of patterns. 
For example, 

�mix = sgn(±�µ1 ± �µ2 ± �µ3 )i i i i 

An even number won’t work, because the sum works out to zero on some sites. 

•	 There are spin glass states for large p, which are not correlated with any finite 
number of the patterns �. 

Energy function 

If the interactions Wij are symmetric, then 

1 
E = 

� 
Wij sisj− 

2 
ij 

is nonincreasing under the dynamics (1), assuming asynchronous update. 
To prove this, note that the i = j terms in the sum are unchanging, since s2 

i = 1. 
Therefore the change in E due to the update (1) is given by 

1 
�E = − 

2
(si

� − si) 
� 

Wij sj	 (7) 
j,j=i� 

1	 1 
= − 

2
(si

� − si) 
� 

Wij sj + (s�i − si)Wiisi (8)
2 

j 

If s� = si, then �E = 0 and we are done. In the other case, s� = −si, and we can i	 i 
write 

�E = −si
�� 

Wij sj − Wiis 2 
i � 0 

j 

5 



Therefore the dynamics can be understood as descent on an energy landscape. 
Statistical physicists like binary neurons because they are analogous to magnetic 

spins. The synaptic interaction Wij can be compared to a magnetic interaction. If 
Wij > 0, the spins want to line up in the same direction, as in a ferromagnet. If 
Wij < 0, the interaction is called antiferromagnetic. 

7 Energy function 

Let’s consider the case Wij = 1 for all i and j. This corresponds to a pure ferromagnet, 
in which all interactions try to make the spins line up in the same direction. In this case, 

⎠2 
1
��

E = si− 
2 

i 

Obviously there are two minima, the fully magnetized states si = 1 for all i and 
si = −1 for all i. Any initial condition with more up spins than down spins will 
converge to the all up state, and a similar statement can be made about the down state. 

Suppose that we would like to store a single pattern � as an attractor of the dynam­
ics. This is basically the same as the previous case. If we choose 

Wij = �i�j 

then the energy function is 

1 
E = − 

2 

� 
�i�j sisj (9) 

ij 

1
�� 

⎠ 

= �isi (10)− 
2 

i 

The attractors of this dynamics are si = �i and si = −�i, as required. In statistical 
mechanics, this is known as the Mattis model. 

Note that the energy function for this network is 

⎠2 
1 

E =
��� 

si�i
µ− 

2N 
µ i 

It’s plausible that the patterns should be local minima, but they might interfere with 
each other. 

8 Content-addressable memory 

The input is encoded in the initial condition of the network dynamics. Convergence to 
an attractor corresponds to recall of the closest stored memory. 

6 


