
MIT Department of Brain and Cognitive Sciences 
9.29J, Spring 2004 - Introduction to Computational Neuroscience 
Instructor: Professor Sebastian Seung 

MATLAB, Statistics, and Linear Regression 

Justin Werfel 

9.29 Optional Lecture #1, 2/09/04 

1 MATLAB 

MATLAB is a powerful software package for matrix manipulation. It’s a very useful 
language not only for this class, but for a variety of scientific applications, and is used 
widely thoughout industry. Just as when you have a hammer, everything looks like a 
nail, so when you have MATLAB, everything looks like a matrix. You may learn to 
approach this Zen-like state by the end of the class. 

1.1 Free your mind 

The basic MATLAB data type is a matrix, an array of values (by default, double-
precision floating point numbers), typically arranged as a two-dimensional1 grid (though 
arrangements of more or fewer dimensions are possible). 

The simplest matrix consists of a single element. We can assign a value to a variable 
with a statement like2 

i = 4


Notice that when you enter this command, MATLAB echoes the result back to you. 
You can suppress that echo by ending the statement with a semicolon: 

i = 4;


A vector (one-dimensional matrix) can be created with the colon operator. To make 
a row vector of successive integers, use a statement like x=2:9. The default increment 
between successive entries is 1; you can specify a different increment by putting it be­
tween two colons, e.g., x=9:-2:3 creates a row vector with the elements (9, 7, 5, 3). 

The transpose operator in MATLAB is the single-quote; the easiest way to create 
a column vector, then, is to transpose a row vector, e.g., x=(1:8)’. Note that paren­
theses in MATLAB, like in C and other languages, can be used to specify the order in 

1There are at least two ways we can use the word ‘dimension’ when talking about matrices. One refers to 
the layout, in the sense that a line is one-dimensional, a square two-dimensional, etc. The other is in the sense 
of dimensionality of a matrix, e.g., (x1 , x2 , x3, x4) is four-dimensional (although as a vector, its elements 
are arranged in a line when it’s written; that is, a vector is one-dimensional in the first sense). MATLAB’s 
help system tends to use the first sense, Sebastian tends to use the second. Context should hopefully always 
make it clear which sense is meant. If you have questions about any specific situation, ask. 

2I’m not going to display the results of every operation here; try them out for yourself and see what 
happens. 

1 



which you want operations performed; if you type x=1:8’, MATLAB first transposes 
the element 3 (with no effect), then applies the colon operator and gives you a row 
vector as before. 

To enter a two-dimensional matrix, use commas or spaces to separate entries on 
the same row, and semicolons or carriage returns to separate rows. For example, the 
statement 

A = [1, 5,3 6

2 7 4,4; 3, 8 3 8

]


specifies the matrix 
⎣ � 
1 5 3 6 

7 4�2 4� 

3 8 3 8 

Parentheses are used to index matrices, and commas to separate dimensions; so for 
instance, with the last definition we used for x, x(5) is 5, and A(1,4) is 6.3 You can 
specify ranges of indices with the colon operator; a colon by itself means all entries 
in that dimension; the keyword end specifies the last entry in a dimension. See what 
these statements give you: 

A(2:3,1:3)

A(:,2)

A(3,2:end)

A(1:end-1,3)


Some operators have special meanings when applied to matrices (notably multi­
plication, *, and raising to a power, ˆ); if you want to apply an operation to ev­
ery element of a matrix separately, put a period before the operator. For instance, 
(1:8)*(1:8) gives an error because the inner dimensions of the matrices don’t 
match; (1:8)*(1:8)’ is an inner product, returning a single value; (1:8).*(1:8) 
gives you a row vector of the squares of the first eight counting numbers; so does 
(1:8).ˆ2. 

1.2 M-files, data sets, looping and why you should never do it 

Suppose we’ve got some set of N sensors from which we can read measurements (tem­
perature, voltage, whatever) all at the same time; and we sample from them repeatedly 
M times, so we have M sets of N values. Here’s our first look at MATLAB as ham­
mer: one natural way to store these data points is in a matrix A, say M rows by N 
columns. Then each row is a snapshot of the sensor readings at a given time; A(i, j) is 
the value the jth sensor had at time i. Let’s further suppose that we want to calculate 
some weighted sum of the sensor readings at each time step; the weights are given by 
values stored in the column vector b. 

3MATLAB stores matrices in memory such that the order of entries in columns is preserved. Thus A(2) 
= 2, A(5) = 7, etc. You can drop the geometry and get all the entries of a matrix as a single column vector 
with the syntax A(:). Sometimes that knowledge or that operation comes in handy. 

2 



The loop-based way to think about doing this would be to loop over all times, and 
for each time, loop over all sensor values, multiply each by its weight, and add up those 
products. Because it would be a pain to type in all the separate statements every time 
we wanted to do this, let’s write a program. With your favorite text editor, create the 
following file, and name it sensor.m: 

M = 5000; N = 500; % Let’s choose M and N reasonably large.

A = rand(M,N); b = rand(N,1);

C = zeros(5000,1);

for i=1:5000


for j=1:500

C(i) = C(i) + A(i,j) * b(j);


end

end


A few notes about this program: 

1. This is a script, a collection of MATLAB commands put into a file with the 
.m extension; typing the filename is then equivalent to typing in all those com­
mands separately at the command line. The other type of M-file is a function. 
Creating those is slightly more complicated; you can read about it by typing 
help function at the command line. The use of functions is also different 
from the use of scripts in various subtle ways that I’m not going to get into here, 
mostly having to do with the scope of variables in memory. 

2. In the first line, you’ll see that you can put more than one statement on the same 
line; semicolons separate statements and suppress echoing, commas separate 
statements and echo the result. 

3. Everything after the % character on a line is treated as a comment and ignored 
by the interpreter. 

4. The rand(p,q) command creates a p × q matrix and fills it with random num­
bers between 0 and 1 drawn from a uniform distribution (every value is equally 
likely). randn has the same syntax, but draws its random numbers from a Gaus­
sian distribution with mean 0 and standard deviation 1. Other commands in the 
same family include zeros and ones, which fill the matrices they create with 
zeros and ones, respectively. MATLAB’s intuitive that way. Be warned: if you 
provide only one argument to any of these commands, it won’t give you a vector 
of that length, as you might expect, but rather a square matrix. 

5.	for looping is done according to the syntax 
for <index> = <expression>; <statements>; end. 
<expression> is typically a vector; as the loop executes, <index> takes on 
each of the values in that vector in turn. So you can have a loop like 
for i=[6 3 12 -1 7], if you want; if it’s not clear what that does, try it 
out, having it print the value of i on each iteration. 

3 



All right, with all that said, we can now run the program. Type sensor at the com­
mand line. Pay attention to how long it takes to execute. 

You may have noticed that this situation was constructed such that we can do ex­
actly the same thing without looping, just by multiplying A and b together (compare 

⎡ 
the definition of matrix multiplication: if C = A � b, then Cij = Aik bkj . Try k 
C=A*b, and compare its execution time to the looping case. This is why the problem 
set stresses so much the need to avoid loops; not only does it make your code much 
more elegant and readable, but MATLAB is full of optimizations to make these kinds 
of operations on matrices take place much more quickly. 

1.3 Plotting and printing 

One of the great things about MATLAB is the ease and control with which you can use 
it to make plots. The command help plot will tell you all about it, but I’ll give you 
a few examples to give you an idea of what you can do: 

t = 0:0.1:10; % say we take samples every .1 seconds from 0 to 10 seconds

y = sin(2*pi*t/5); % make y a sine wave with period 5 seconds

plot(y) % the simplest way to plot; notice that the horizontal axis

% is not 0 to 10 as we would like, but rather corresponds to

% the indices of y, by default


plot(t,y) % specify both the horizontal and vertical quantities to

% plot against one another


plot(t,y,’go--’) % change the appearance of the plot with an optional

% third argument, a string that can specify color

% (here, green), point appearance (circles), and

% line style (dashed); look in ’help plot’ for more

% options


x = cos(2*PI*x/5);

plot(x,y) % parametric plots are equally possible

plot(t,x,’g-.’,t,y,’r*’) % more than one plot can be put on the same

% axes, by adding more triplets of arguments

% to the plot command


plot(t,x,’k:’) % note that making a new plot by default clears the

% old one

hold on % after this command, future plots will appear on the same

% axes without clearing them


plot(t,y,’m-.’)

hold off % and now future plots will clear the axes again

plot(x,y) 
semilogx(x+2,y+2) % make the x-axis logarithmic 
semilogy(x+2,y+2) % or the y-axis 
loglog(x+2,y+2) % or both axes 

To print out your masterpiece, MATLAB helpfully provides a print command, 
which has a longer help file than any other command I can think of. Here are the 
options you’re most likely to use: 

4 



print % send current figure to the default printer

print -Pname % send figure to printer called ’name’

print -dps file.ps % print to a PostScript file called ’file.ps’

print -dpsc file.ps % or color PostScript

print -depsc2 file.eps % or color encapsulated PostScript

print -djpeg file.jpeg % or JPEG


1.4 How to learn MATLAB 

It’s actually pretty difficult to go about explaining how to use MATLAB in a methodical 
way. The best way to learn, and the primary way I learned, is to use its excellent help 
system, and play around with commands. 

To get help on the syntax for any command, type help <command>. A lot 
of commands have intuitive names; if you want to know how to find the mean of 
a vector, for instance, try help mean, and there it is. If you want a command 
that performs some function but you can’t think of the name of the command, use 
lookfor <keyword>; for instance, try lookfor variance. 

Here’s a set of commands that you might find especially useful; I’ll let you read 
about how to use them. As always, ask any questions you like. 

while: the other kind of loop

if/elseif/else: the other use of conditional statements

size(A) : returns M and N for an M-by-N matrix A

repmat(a,b,c) : tiles matrix A, repeating it b times vertically and c


times horizontally; try ’repmat(rand(2,2),2,3)’

max, min : note that ’m = max(x)’ returns in m the maximum value in


the vector x; ’[m,i]’ = max(x)’ returns the same thing, plus the

index of that value in i!


mean, sum

find : _very_ useful; read the help file

who : returns the names of all the variables in memory

whos : like who, but returns more detailed information

clear : clears all variables from memory; ’clear x y z’ clears just


variables x, y, and z

why : answers any question (try it the next time you get an error!)


2 Variance and covariance 

In class, Sebastian explained that variance is a measure of how much a function or 
time series fluctuates about its mean. It differs from second moment, ∗x2�, in that the 
mean is subtracted; thus with x(t) = 10 + sin(t)/10 and y(t) = 2 � sin(t), the second 
moment of x will be much greater than that of y, but the variance of y will be much 
greater—which fits with our intuitive notion of what variance should be. 

Sebastian gave the definition Var[x] � ∗x2� − ∗x�2 . I find it easier to see how this 
corresponds to subtracting the mean by starting from a formulation where the mean is 

5 



subtracted more explicitly: 

Var(x) = ∗(x − ∗x�)2� 
2 = ∗(x	2 − 2x∗x� + ∗x� ) 

� � 1 �1	
2 1 

= xi − 2 xi ∗x� + ∗x�2 

N N N 
i i i 

� 1 �1 
= ∗x 2� − 2∗x� xi + ∗x�2 1 

N N 
i i 

2 = ∗x 2� − 2∗x� + ∗x�2 

2 = ∗x 2� − ∗x� . 

Here we used the definition ∗x� = 1 ⎡ 
xi, and relied on the fact that ∗x� is a fixed 

N i 
quantity which does not depend on the index i and thus can be taken outside the sum. 

Covariance is a measure of the extent to which two variables fluctuate together; if 
both tend to increase at the same time and decrease at the same time, the covariance 
will be high. You can see that if x and y are each large and positive at the same time 
as one another, and large and negative at the same time as one another, the term ∗xy� 
will be large and positive, reflecting the high covariance. However, this term is not 
enough on its own; for the same reasons as with variance, to avoid getting artificially 
high or low values for the result, we want to subtract the mean from each variable. 
Again starting from an expression where we do so explicitly, 

Cov(x, y) = ∗(x − ∗x�)(y − ∗y�)� 

= ∗xy� − ∗x∗y�� − ∗∗x�y� + ∗∗x�∗y�� 
1 � 1 � 1 � 

= ∗xy� − 
N 

xi ∗y� − 
N 

∗x�yi + 
N 

∗x�∗y� 
i i i 

1 � 1 � 1 � 
= ∗xy� − ∗y� 

N 
xi − ∗x� 

N 
yi + ∗x�∗y� 

N 
1 

i i i 

= ∗xy� − ∗y�∗x� − ∗x�∗y� + ∗x�∗y� 

= ∗xy� − ∗x�∗y� 

which is the definition Sebastian gave in class. 

3 Linear regression 

You should be familiar with the idea of solving systems of linear equations. For in­
stance, if you have the equations 

3x + 2y = 8 and 

x − 4y = −3, 

and you want to solve for x and y, you can write this in matrix form: 
⎤ ⎦⎤ ⎦ ⎤ ⎦ 
3 2 x 8 

= 
1 −4 y −3 

6 



� 

If we define 
⎤ ⎦ ⎤ ⎦ ⎤ ⎦ 

A = 
3 
1 

2 
−4 

, x = 
x 
y 

, d = 
8 
−3 

, 

the equation becomes Ax = d, which has solution x = A−1d. In MATLAB, you can 
find this solution with the command x = inv(A)*d or x = A\d. 

Geometrically, if you think of x and y as coordinates, we’re finding the location 
where these two lines meet. Or the same approach can describe a different situation: 
with the familiar equation for a line y = mx + b, the equations 

3 = 7m + b and 

1 = 3m + b 

give the matrix equation 
⎤ ⎦⎤ ⎦ ⎤ ⎦ 
7 1 m 3 

= 
3 1 b 1 

The interpretation suggested here is that we’re finding the line connecting the two 
points (7, 3) and (3, 1). 

If you know much about matrix algebra, you know that things aren’t always this 
simple. This is a case with a unique solution, one and only one. Sometimes the matrix 
isn’t invertible, e.g., 

⎤ ⎦⎤ ⎦ ⎤ ⎦ 
1 2 x 3 

= 
2 4 y 6 

This is the case where the two lines are identical, or the two points are the same; you 
don’t have enough information to lock the solution down exactly. In this case the 
problem is called underconstrained. If your matrix A has fewer rows than columns, 
it’ll necessarily be underconstrained. If you’ve got two equations and four unknowns, 
you’re stuck; there’s no unique solution, there’s an infinity of solutions. 

The opposite situation is when you’re overconstrained. Here you also have no 
unique solution, but in this case it’s not that you have infinitely many solutions, but 
rather that you have none; there are too many constraints and they can’t all be satisfied 
at once. Your lines don’t intersect in a single point, or (and this is clearly the case I’m 
working up to) your points don’t all lie on a single line. In that case, the best you can do 
in trying to fit a line to those points is to minimize the total error, for some convenient 
measure of error. The one that’s always used, and this is the one Sebastian talked about 
in class, is the total squared error, the sum of the squares of the vertical distances from 
each point to the line: 

1 
E = (yi − (mxi + b))2 

2 
i 

Minimizing this squared error gives rise to the familiar term ‘least-squares’. 
For the problem to be overconstrained, A must have more rows than columns.4 

Since A isn’t square, you can’t simply take its inverse. But what you can do is multiply 
both sides of the equation on the left by its transpose: 

AT Ax = AT d 
4More rows than columns doesn’t necessarily mean the problem is overconstrained; it’s a necessary but 

not sufficient condition. The data set could have a unique solution or be underconstrained. 

7 



This is called the normal equation. And this is the equation that, for a given A and 
d, minimizes that squared error. In that sense, it makes the left and right sides of the 
equation as close as they can get. 

Now look at this matrix AT A. If A is M × N , then AT A is (N × M )(M × N ) = 
N × N ; so it’s square, which means we can at least try to take an inverse, and in almost 
all real-world cases an inverse exists. Then the least-squares solution is 

x = (AT A)−1AT d. 

−1ATThis (AT A) is called the pseudoinverse. 
You can find this solution in MATLAB by typing in the expression 

x = inv(A’*A)*A’*d, by using pinv, or by writing A\d. I think all of these are 
actually calculated differently, but in real-world cases of real-valued data they should 
all give the same result. 

8 


