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Wiener­Hopf equations. Convolution and 
correlation in continuous time 

Sebastian Seung 

9.29 Lecture 3: February 11, 2003 

When analyzing neural data, the firing rate of a neuron is sometimes modeled as a 
linear filtering of the stimulus. Alternatively, the stimulus is modeled as a linear filter­
ing of the spike train. To construct such models, the optimal fil ter must be determined 
from the data. This problem was studied by the famous mathematician Norbert Wiener 
in the 1940s. It requires the solution of the famous Wiener­Hopf equations. 

1 The Wiener­Hopf equations 

Suppose that we’d like to model the time series yi as a fil tered version of xi, i.e. find 
the h that optimizes the approximation 

yi ≈ hj xi−j 

j 

We assume that both x and y have had their means subtracted out, so that no additive 
constant is needed in the model. Also, hj is assumed to be zero for j < M1 or j > M2. 
This constrains how far forward or backward in time the kernel extends. For example, 
M1 = 0 corresponds to the case of a causal filter. 

The best approximation in the least squares sense is obtained by minimizing the 
squared error ⎛ ⎞2 

1 
M2

E = ⎝yi − hj xi−j ⎠ 
2 

i j=M1 

relative to hj for j = M1 to M2. This is analogous to the squared error function for 
linear regression, which we saw in the first lecture. 

The minimum is given by the equations, ∂E/∂hk = 0, for k = M1 to M2. These 
are the famous Wiener­Hopf equations, 

M2

Cxy hj C
xx= k−j k = M1, . . . ,M2 (1)k


j=M1
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where the shorthand notation 

Cxy = xiyi+k Cxx = xixi+lk l 
i i 

has been used for the cross­covariance and auto­covariance. You’ll be asked to prove 
this in the homework. This is a set of M2 − M1 + 1 linear equations in M2 − M1 + 1 
unknowns, so it typically has a unique solution. For our purposes, it will be sufficient to 
solve them using the backslash (\) and toeplitz commands in MATLAB. If you’re 
worried about minimizing computation time, there are more efficient methods, like 
Levinson­Durbin recursion. 

Recall that in simple linear regression, the slope of the optimal line times the vari­
ance of x is equal to the covariance of x and y. This is a special case of the Wiener­Hopf 
equations. In particular, linear regression corresponds to the case M1 = M2 = 0, for 
which 

= Cxy /Cxxh0 0 0 

2 White noise analysis 

If the input x is Gaussian white noise, then the solution of the Wiener­Hopf equation is 
trivial, because Cxx = C0 

xxδkj . Therefore k−j 

Cxy 

hk = k (2)
Cxx 

0 

So a simple way to model a linear system is to stimulate it with white noise, and 
correlate the input with the output. This method is called reverse correlation or white 
noise analysis. 

If the input x is not white noise, then you must actually do some work to solve the 
Wiener­Hopf equations. But if the input x is close to being white noise, you might 
get away with being lazy. Just choose the filter to be proportional to the xy cross­
correlation, hk = kCxy /γ, as in the formula (2). The optimal choice of the normaliza­
tion factor γ is � 

Cxy Cxx Cxy 
jl j j−l l

γ = � 
m C

xyCxy 
m m 

Cxxwhere the summations run from M1 to M2. Note this reduces to γ = 0 in the case 
of white noise, as in Eq. (2). 

3 Discrete versus continuous time 

In the previous lecture, the convolution, correlation, and the Wiener­Hopf equations 
were defined for data sampled at discrete time points. In the remainder of this lecture, 
the parallel definitions will be given for continuous time. 

Before the advent of the digital computer, the continuous time formulation was 
more important, because of its convenience for symbolic calculations. But for numeri­
cal analysis of experimental data, it is the discrete time formulation that is essential. 
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4 Convolution 

Consider two functions g and h defined on the real line. Their convolution g ∗ h is 
defined as � ∞

(g ∗ h)(t) = dt�g(t − t�)h(t�) 
−∞ 

The continuous variables t and t� have taken the place of the discrete indices i and j. 
Again, you should verify commutativity and associativity. 

If g and h are only defined on finite intervals, they can be extended to the entire 
real line using the zero padding trick. For example, if h vanishes outside the interval 
[0, T ], then � T 

(g ∗ h)(t) = dt�g(t − t�)h(t�) 
0 

5 Firing rate 

To define the continuous­time representation of a spike train, we need to make use of 
a mathematical construct called the Dirac delta function. The delta function is zero 
everywhere, except at the origin, where it is infinite. You can imagine it as a box of 
width Δt and height 1/Δt centered around the origin, with the limit Δt 0. The→
delta function is defined by the identity 

∞ 

h(t) = dt�δ(t − t�)h(t�) 
−∞ 

In other words, when the delta function is convolved with a function, the result is the 
same function, or h = δ ∗ h. A special case of this formula is the normalization 
condition � ∞

1 = dt�δ(t − t�) 
−∞ 

Note that the delta function has dimensions of inverse time. 
The delta function represents a single spike at the origin. A spike train with spikes 

at times ta can be written as a sum of delta functions, 

ρ(t) = δ(t − ta) 
a 

A standard way of estimating firing rate from a spike train is to convolve it with a 
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response function w 

ν(t) = dt w(t − t�)ρ(t�) (3) 

= dt w(t − t�) δ(t� − ta) (4) � a 

= dt w(t − t�)δ(t� − ta) (5) 
a 

= w(t − ta) (6) 
a 

So the convolution simply adds up copies of the response function centered around the 
spike times. Note that it’s important to choose a kernel satisfying 

dt w(t) = 1 

so that � � 
dt ν(t) = dt ρ(t) 

Since the Dirac delta function has dimensions of inverse time, smoothing ρ(t) results 
in an estimate of firing rate. In contrast, the discrete spike train ρi is dimensionless, so 
smoothing it results in an estimate of probability of firing. You can think of ρ(t) as the 
Δt 0 limit of ρ i/Δt.→ 

6 Low­pass filter 

To see the convolution in action, consider the differential equation 

dx 
τ + x = h 

dt 

This is an equation for a low­pass filter with time constant τ . Given a signal h, the 
output of the filter is a signal x that is smoothed over the time scale τ . The solution 
can be written as the convolution x = g ∗ h, where the “impulse response function” g 
is defined as 

1 
e−t/τ θ(g(t) = t)

τ 

and we have defined the Heaviside step function θ(t), which is zero for all negative 
time and one for all positive time. The response function g is zero for all negative time, 
jumps to a nonzero value at time zero, and then decays exponentially for positive time. 

To construct the function x, the convolution places a copy of the response function 
g(t − t�) at every time t�. Each copy gets weighted by h(t�), and they are all summed to 
obtain x(t). The response function is sometimes called the kernel of the convolution. 
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To see another application of the delta function, note that the impulse response 
function for the low­pass filter satisfies the differential equation 

dg
τ + g = δ(t)

dt 

In other words, g is the response to driving the low­pass filter with an “impulse” δ(t), 
which is why it’s called the impulse response. 

7 Correlation 

The correlation is defined as 

∞
Corr[g, h](t) = dt�g(t�)h(t + t�) 

−∞ 

This compares g and h at times separated by the lag t.1 Note that Corr[g, h](t) = 
Corr[h, g](−t), so that the correlation operation is not commutative. 

As before, if g and h are only defined on the interval [0, T ], they can be extended 
by defining them to be zero outside the interval. Then the above definition is equivalent 
to � T 

Corr[g, h](t) = dt�g(t�)h(t + t�) 
0 

This is the unnormalized version of the correlation. In the Dayan and Abbott textbook, 
Qgh(t) = (1/T ) Corr[g, h](t), which is the normalized correlation. 

8 The spike­triggered average 

Dayan and Abbott define the spike­triggered average of the stimulus as the average 
value of the stimulus at time τ before a spike, 

1 
C(τ) = s(ta − τ) 

n 
a 

where n is the number of spikes. Then in Figure 1.9 they plot C(τ) with the positive τ 
axis pointing left. This sign convention may be standard, but it is certainly confusing. 

Exactly the same graph would be produced by the alternative convention of taking 
C(τ) to be the average value of the stimulus at time τ after a spike, and plotting it with 
the positive τ axis pointing right. Note that in this convention, C(τ) would have the 

1The expression above is the definition used in the Dayan and Abbott book, but take note that the opposite 
convention is used in other books like Numerical Recipes, which call the above integral Corr[h, g](t). 

5 



� 

� � 

� 

� 

� 

� 

same shape as the cross­correlation of ρ and s, 

Corr[ρ, s](τ ) = dt ρ(t)s(t + τ ) (7) 

= dt δ(t − ta)s(t + τ ) (8) 
a 

= s(ta + τ ) (9) 
a 

9 Visual images 

So far we’ve discussed situations where the neural response encodes a single time­
varying scalar variable. In the case of visual images, the stimulus is a function of 
space as well as time. This means that a more complex linear model is necessary for 
modeling the relationship between stimulus and response. Let the stimulus be denoted 
by sab, where the indices a and b specify pixel location in the two­dimensional image. i 

ab ab abConstruct xi = si � by subtracting out the pixel means. Similarly, let yi denote−�s
the neural response with the mean subtracted out. Then consider the linear model 

yi ≈ hab ab 
j xi−j 

jab 

We won’t derive the Wiener­Hopf equations for this case, as the indices get messy. 
But for white noise the optimal filter is given by the cross correlation 

hab ab 
j ∝ xi yi+j 

i 

White noise is defined so that 

1 
m

ab cd xi xi+j = σ2 
xδj δacδbd 

m 
i=1 
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