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Whenanalyzingneuraldata,thefiring rateof a neuronis sometimesnodeledasa
linearfiltering of the stimulus.Alternatively, the stimulusis modeledasa linearfilter-
ing of the spike train. To constructsuchmodels the optimalfilter mustbe determined
from thedata.This problemwasstudiedby thefamousnathematiciafmNorbertWiener
in the 1940s.It requiresthe solution of thefamouswWienerHopf equations.

1 The Wiener-Hopf equations

Supposehatwe’d like to modelthe time seriesy; asafilteredversionof z;, i.e. find
the h thatoptimizesthe approxination
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We assumehatboth x andy have hadtheir meanssubtractecdut, sothatno additive
constants neededn themodel.Also, h; is assumedo bezerofor j < M; orj > M.
This constrainshow far forward or backwardin time the kernelextends.For example,
M; = 0 correspondso the caseof a causalfilter.

The bestapproximationin the leastsquaressenseis obtainedby minimizing the
squarecerror
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relatve to h; for j = M, to M,. Thisis analogoudo the squarederror function for
linearregressionwhich we saw in thefirst lecture.

Theminimumis givenby the equationsgE /0hy, = 0, for k = M; to M,. These
arethefamousWienerHopf equations,
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where the shorthand notation
cyY = inyi-&-k Cl* = ZM%‘H
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hasbeenusedfor the cross-covariancandauto-covarianceYou'll be askedto prove
thisin the homeworkThisis a setof M, — M; + 1 linearequationsn My — My + 1
unknownssoit typically hasauniquesolution.Forour purposesit will besufficientto
solvethemusingthebackslasi{\) andtoeplitz commandsn MATLAB. If you're
worried aboutminimizing computationtime, there are more efficient methods,like
Levinson-Durbin recursion.

Recallthatin simplelinearregressionthe slopeof the optimalline timesthe vari-
anceof z is equalto thecovariancef = andy. Thisis aspeciakaseof theWiener-Hopf
equations.n particular,linearregressiorcorrespondso thecaseM; = M, = 0, for
which

ho = Cp? /Cg”

2 White noise analysis

If theinputz is Gaussiamwhite noise thenthesolutionof the Wiener-Hopfequations
trivial, because ¢ ; = Cj*dy;. Therefore
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So a simple way to model a linear systemis to stimulateit with white noise, and
correlatethe input with the output. This methodis calledreversecorrelationor white
noise analysis.

If theinputz is notwhite noise,thenyou mustactuallydo somework to solvethe
Wiener-Hopfequations.But if the input z is closeto beingwhite noise,you might
get away with beinglazy. Justchoosethe filter to be proportionalto the xy cross-
correlationh, = C} /v, asin theformula(2). The optimal choiceof the normaliza-
tion factor ~is
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wherethe summationgun from M; to M,. Notethisreducego v = C§* in thecase
of white noise, as in Eq. (2).

3 Discrete versus continuous time

In the previouslecture,the convolution, correlation,and the Wiener-Hopfequations
weredefinedfor datasampledat discretetime points. In the remaindetrof this lecture,
the parallel definitions will be given for continuous time.

Before the adventof the digital computer,the continuoustime formulation was
moreimportant,becaus®f its conveniencéor symboliccalculationsBut for numeri-
cal analysis of experimental data, it is the discrete time formulation that is essential.



4 Convolution

Considertwo functionsg andh definedon the realline. Their convolutiong * h is
defined as -
(gm0 = [ dtg(e—eon(e)
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The continuousvariablest andt’ havetakenthe placeof the discreteindices: and .
Again, you should verify commutativity and associativity.
If ¢ andh areonly definedon finite intervals,they canbe extendedo the entire
realline usingthe zeropaddingtrick. For example,f h vanishesutsidetheinterval
[0, T1], then

T
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5 Firing rate

To definethe continuous-timeepresentationf a spiketrain, we needto makeuseof
a mathematicatonstructcalled the Dirac deltafunction. The deltafunctionis zero
everywheregexceptat the origin, whereit is infinite. You canimagineit asa box of
width At andheight1/At centeredaroundthe origin, with the limit At — 0. The
delta function is defined by thdentity

h(t) = /jo dt's(t —t")h(t)

In otherwords,whenthe deltafunctionis convolvedwith a function, theresultis the
samefunction,or h = ¢ x h. A specialcaseof this formula is the normalization
condition

1:/ dt's(t —t')

Note that the delta function has dimensions of inverse time.
Thedeltafunctionrepresents singlespikeattheorigin. A spiketrain with spikes
at times ¢, can be written as a sum of delta functions,

plt) = 35t~ t,)

A standardwvay of estimatingdfiring ratefrom a spiketrainis to convolveit with a



response function w

v(t) = /dt w(t —t)p(t') 3)
= /dtw(t—t')Zé(t’ —tq) (4)
- Z/dtw(t —t)o(t —ta) ©)
= Zw(t —tq) (6)

Sothe convolutionsimply addsup copiesof theresponsdunctioncenteredaroundthe
spike timesNote that it's important to choose a kernel satisfying

/ dtw(t) = 1
/ dtv(t) = / dt p(t)

Sincethe Dirac deltafunction hasdimensionf inversetime, smoothingp(t) results
in anestimateof firing rate.In contrastthe discretespiketrain p; is dimensionlessso
smoothingt resultsin anestimateof probability of firing. You canthink of p(t) asthe
At — 0limitof p; /At.

so that

6 Low-pass filter

To see the convolution in action, consider the differential equation
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- =h
Tdt +x
This is an equationfor a low-passfilter with time constantr. Given a signal h, the
outputof thefilter is a signalz thatis smoothedver the time scaler. The solution
canbewritten asthe convolutionz = g * h, wherethe “impulse responsdunction” g
is defined as

(1) = Ze/70(1)

andwe havedefinedthe Heavisidestepfunction 6(t), which is zerofor all negative
time andonefor all positivetime. Theresponsdunctiong is zerofor all negativetime,
jumpsto anonzerovalueattime zero,andthendecaysxponentiallyfor positivetime.

To constructhefunctionz, the convolutionplacesa copy of theresponsdunction
g(t—t') ateverytimet’. Eachcopygetsweightedby h(t'), andtheyareall summedo
obtain «(¢). The response function is sometimes called the kernel of the convolution.



To seeanotherapplicationof the delta function, note that the impulseresponse
function for the low-pass filtesatisfies the differential equation
dg
— =4(t
T t9=4()
In otherwords, g is theresponseo driving the low-passfilter with an“impulse” §(t),
which is why it’s called the impulse response.

7 Correlation

The correlation is defined as
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Corr[g, h](t) = / dt' gt )h(t +t")
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This comparesy and i at times separatedy the lag t.* Note that Corr[g, h](t) =
Corrl[h, g](—t), so that the correlation operation is not commutative.

As before,if g andh areonly definedon the interval [0, T, they canbe extended
by definingthemto be zerooutsidetheinterval. Thentheabovedefinitionis equivalent
to T’

Corr[g, h)(t) :/ dt'g(t")h(t +1t')
0
Thisis theunnormalizedrersionof the correlation.In the DayanandAbbott textbook,
Qqn(t) = (1/T) Corr[g, h|(t), which is the normalized correlation.

8 The spike-triggered average

Dayanand Abbott definethe spike-triggeredaverageof the stimulusasthe average
value of the stimulus at time before a spike,

1
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wheren is the numberof spikes.Thenin Figure1.9theyplot C(7) with thepositiver
axis pointing left.This sign convention may be standard, but it is certainly confusing.
Exactlythe samegraphwould be producedy the alternativeconventionof taking
C(7) to betheaveragevalueof thestimulusattime 7 afteraspike,andplottingit with
the positive r axis pointing right. Notethatin this convention,C(7) would havethe

1Theexpressiomboveis thedefinitionusedin the DayanandAbbottbook, buttakenotethatthe opposite
convention is used in other books like Numerical Recipes, which call the above integral Cgj(t)k,



same shape as the cross-correlation of p and s,

Corr[p, s|(t) = /dt p(t)s(t +7) (7)
= /dtZé(t—ta)s(tJrT) (8)
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9 Visual images

So far we've discussedsituationswherethe neuralresponseencodesa single time-
varying scalarvariable. In the caseof visual images,the stimulusis a function of
spaceaswell astime. This meansthata morecomplexlinear modelis necessaryor
modeling therelationship between stimulasd responsd.et the stimulus be denoted
by s¢*, wheretheindicesa andb specifypixel locationin thetwo-dimensionalmage.
Constructz?® = 52 — (s%%) by subtractingoutthepixel means Similarly, let y; denote
the neural response with the mean subtractedThen consider the linear model
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We won't derive the Wiener-Hopgquations for this case, as the indices get messy.
But for white noise the optimal filter is given by the cross correlation
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White noise is defined so that
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