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MIT Department of Brain and Cognitive Sciences 
9.29J, Spring 2004 - Introduction to Computational Neuroscience 
Instructor: Professor Sebastian Seung 

Convolution and correlation 

Sebastian Seung 

9.29 Lecture 2: February 6, 2003 

In this lecture, we’ll  learn about two mathematical operations that are commonly 
used in signal processing, convolution and correlation. The convolution is used to 
linearly filter a signal, for example to smooth a spike train to estimate probability of 
firing. The correlation is used to characterize the statistical dependencies between two 
signals. 

A few words about the big picture. The previous lecture discussed how to construct 
a linear model relating firing rate and stimulus at a single time. In the next lecture, 
convolution and correlation will  be used to construct linear models that relate neural 
firing rate to a stimulus, but at multiple times. 

1 Convolution 

Let’s consider two time series, gi and hi, where the index i runs from −∞ to ∞. The 
convolution of these two time series is defined as 

∞

(g ∗ h)i = gi−j hj (1) 
j=−∞ 

This definition is applicable to time series of infinite length. If  g and h are finite, they 
can be extended to infinite length by adding zeros at both ends. After this trick, called 
zero padding, the definition in Eq. (1) becomes applicable. For example, the sum in 
Eq. (1) becomes 

n−1

(g ∗ h)i = gi−j hj (2) 
j=0 

for the finite time series h0, . . . , hn−1. 

Exercise 1 Convolution is commutative and associative. Prove that g ∗ h = h ∗ g and 
f ∗ (g ∗ h) = (f ∗ g) ∗ h. 

Exercise 2 Convolution is distributive over addition. Prove that (g1 + g2) ∗ h = 
g1 ∗ h + g2 ∗ h. This means that filtering a signal via convolution is a linear operation. 

Although g and h are treated symmetrically by the convolution, they generally have 
very different natures. Typically, one is a signal that goes on indefinitely in time. The 
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other is concentrated near time zero, and is called a filter. The output of the convolution 
is also a signal, a filtered version of the input signal. 

Note that filtering a signal via convolution is a linear operation. This is an important 
property, because it simplifies the mathematics. There are also nonlinear methods of 
filtering, but they involve more technical difficulties. Because of time limitations, this 
class will cover linear filters only. Accordingly, we will discuss only neurobiological 
examples for which linear models work well. But these examples are exceptions to the 
rule that most everything in biology is nonlinear. Don’t jump to the conclusion that 
linear models are always sufficient. 

In Eq. (2), we chose hi to be zero for all negative i. This is called a causal filter, 
because g ∗ h is affected by h in the present and past, but not in the future. In some 
contexts, the causality constraint is not important, and one can take h−M , . . . , hM to 
be nonzero, for example. 

Formulas are nice and compact, but now let’s draw some diagrams to see how 
convolution works. To take a concrete example, assume a causal filter (h0, . . . , hn−1). 
Then the ith component of the convolution (g ∗ h)i involves aligning g and h this way: 

· · · gi−m−1 gi−m gi−m+1 · · · gi−2 gi−1 gi gi+1 gi+2 · · · 
0 0 hm−1 h2 h1 h0 0 0· · · · · · · · · 

In words, (g ∗ h)i is computed by looking at the signal g through a window of length 
m starting at time i and extending back to time i − m + 1. The weighted sum of the 
signals in the window is taken, using the coefficients given by h. 

If the signal g has a finite length, then the diagram looks different when the window 
sticks out over the edges. Consider a signal g0, . . . , gm−1. Let’s consider the two 
extreme cases where the window includes only one time bin in the signal. One extreme 
is (g ∗ h)0, which can be visualized as 

0 0 g0 g1 gn−1 0· · · · · · · · · · · · 
hm−1 h1 h0 0 0 0 0· · · · · · · · · 

The other extreme is (g∗ h)m+n−2, which can be visualized as 

gn−1· · · g0 g1 · · · · · · 0 0 0 · · · 
0 0 hm−1 h1 h0 0· · · · · · · · · · · · 

Therefore g ∗ h has m+ n− 1 nonvanishing components. 

2 Using the MATLAB conv function 

If g0, g1, . . . , gM −1 and h0, h1 . . . , hN −1 are given as arguments to the conv func­
tion, then the output is f0, f1, . . . , fM +N −2, where f = g ∗ h. More generally, if 
gM1 , . . . , gM2 and hN1 , . . . , hN2 are given as arguments to the conv function, then 
the output is fM1 +N1 , . . . , fM2 +N2 . In other words, shifting either g or h in time is 
equivalent to shifting g∗ h in time. 

For example, suppose that g is a signal, and h represents an acausal filter, with 
N1 < 0 and N2 > 0. Then the first element of f returned by conv is fM1 +N1 , and the 
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last is fM2 +N2 . So discarding the first |N1 and last N2 elements of f leaves us with |
fM1 , . . . , fM2 . This is time­aligned with the signal gM1 , . . . , gM2 , and has the same 
length. 

Another motivation for discarding elements at the beginning and end is that they 
may be corrupted by edge effects. If you are really worried about edge effects, you 
may have to discard even more elements, which will leave f shorter than g. 

3 Firing rate 

Consider a spike train ρ1, . . . , ρN . One estimate of the probability of firing is 

1 
p = ρi (3)

N 
i 

This estimate is satisfactory, as long as it makes sense to describe the whole spike train 
by a single probability that does not vary with time. This is an assumption of statistical 
stationarity. 

More commonly, it’s a better model to assume that the probability varies slowly 
with time (is nonstationary). Then it’s better to apply something like Eq. (3) to small 
segments of the spike train, rather than to the whole spike train. For example, the 
formula 

pi = (ρi+1 + ρi + ρi−1)/3 (4) 

estimates the probability at time iby counting the number of spikes in three time bins, 
and then dividing by three. In the first problem set, you were instructed to smooth the 
spike train like this, but to use a much wider window. In general, choosing the size of 
window involves a tradeoff. A larger window minimizes the effects of statistical sam­
pling error (like flipping a coin many times to more accurately determine its probability 
of coming up heads). But a larger window also reduces the ability to follow more rapid 
changes in the probability as a function of time. 

Note that Eq. (4) isn’t to be trusted near the edges of the signal, as the filter operates 
on the zeros that surround the signal. 

There are other methods for estimating probability of firing, many of which can be 
expressed in the convolutional form, 

pi = ρi−j wj 

j 

where w satisfies the constraint j wj = 1. According to this formula, pi is the 
weighted average of ρi and its neighbors, so that 0 ≤ pi ≤ 1. Closely related is the 
firing rate per unit time, 

pi
νi = 

Δt 
where Δt is the length of a time bin, or sampling interval. Probabilistic models of neu­
ral activity will be treated more formally in a later lecture, and we’ll example concepts 
like firing rate more critically. 
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There are many different ways to choose w, depending on the particulars of the 
application. Previously we chose w be of length n, with nonzero values equal to 1/n. 
This is sometimes called a “boxcar” filter. MATLAB comes with a lot of other filter 
shapes. Try typing help bartlett, and you’ll find more information about the 
Bartlett and other types of windows that are good for smoothing. Depending on the 
context, you might want a causal or a noncausal filter for estimating probability of 
firing. 

Another option is to choose the kernel to be a decaying exponential, 

0, j < 0 
wj = 

γ(1− γ)j , j ≥ 0 

This is causal, but has infinite duration. 

Exercise 3 Prove that the exponential filter is equivalent to 

pi = (1− γ)pi−1 + γρi 

4 Impulse response 

Consider the signal consisting of a single impulse at time zero, 

1, j = 0 
δj = 0, j = 0 �

The convolution of this signal with a filter h is 

(δ ∗ h)i = δj−khk = hj 

k 

which is just the filter h again. In other words h, is the response of the filter to an 
impulse, or the impulse response function. If the impulse is displaced from time 0 to 
time i, then the result of the convolution is the filter h, displaced by i time steps. 

A spike train is just a superposition of impulses at different times. Therefore, con­
volving a spike train with a filter gives a superposition of filters at different times. 

Elsewhere you may have seen the “Kronecker delta” notation δij , which is equiv­
alent to δi−j . The Kronecker delta is just the identity matrix, since it is equal to one 
only for the diagonal elements i = j. You can think about convolution with δj as mul­
tiplication by the identity matrix δij . More generally, the following exercise shows that 
convolution is equivalent to multiplication of a matrix and a vector. 

Exercise 4 Matrix form of convolution. Show that the convolution of g0, g1, g2 and 
h0, h1, h2 can be written as 

= Ghg ∗ h 

where the matrix G is defined by ⎞⎛ 

G = 

⎜⎜⎜⎜⎝ 

g0 0 0 
g1 g0 0 
g2 g1 g0 

0 g2 g1 

0 0 g2 
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and g ∗ h and h are treated as column vectors. 

Exercise 5 Each column of G is the same time series, but shifted by a different amount. 
Use the MATLAB function convmtx to create matrices like G from time series like g. 
This function is found in the Signal Processing Toolbox. 

If you don’t have this toolbox installed, you can make use of the fact that Eq. (5) is 
a Toeplitz matrix, and can be constructed by giving its first column and first row to the 
toeplitz command in MATLAB. 

Exercise 6 Convolution as polynomial multiplication. If the second degree polynomi­
als g0 + g1z + g2z

2 and h0 + h1z + h2z
2 are multiplied together, the result is a fourth 

degree polynomial. Let’s call this polynomial f0 + f1z + f2z
2 + f3z

3 + f4z
4. Show 

that this is equivalent to f = g ∗ h. 

5 Correlation 

The correlation of two time series is 

∞

Corr[g, h]j = gihi+j (6) 
i=−∞ 

The case j = 0 corresponds to the correlation that was defined in the first lecture. The 
difference here is that g and h are correlated at times separated by the lag j. Note that 
is the convention followed by Dayan and Abbott. Some other books, like Numerical 
Recipes, call the above sum Corr[h, g]j . This can be confusing. 

As with the convolution, this definition can be applied to finite time series by using 
zero padding. Note that Corr[g, h]j = Corr[h, g]−j , so that the correlation operation 
is not commutative. Typically, the correlation is applied to two signals, while its output 
is concentrated near zero. 

The zero lag case looks like 

0 g1 g2 gn 0· · · · · · · · · 
0 h1 h2 hn 0· · · · · · · · · 

and the other lags correspond to sliding h right or left. 
The autocorrelation is a special case of the correlation, with g = h. If g = h, the 

correlation is sometimes called the crosscorrelation to distinguish it from the autocor­
relation. In the first lecture, we distinguished between correlation and covariance. The 
covariance was defined as the correlation with the means subtracted out. Similarly, the 
cross­covariance can be defined as the correlation left between two time series after 
subtracting out the means. The auto­covariance is a special case. The command xcov 
can be used for this purpose. 

Exercise 7 Prove that the autocorrelation is the same for equal and opposite time lags 
±j. 
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6 Using the MATLAB xcorr function 

If g and h are n­dimensional vectors, then the MATLAB command xcorr(g,h) 
returns a 2n − 1 dimensional vector, corresponding to the lags j = −(n − 1) to n + 1. 
Lags beyond this range are not included, as the correlation trivially vanishes. The nth 
element of the result corresponds to zero lag. 

One irritation is that MATLAB 5 and 6 follow different conventions. MATLAB 5 
calls Eq. (6) xcorr(g,h), while MATLAB 6 calls it xcorr(h,g). 

A maximum lag can also be given as an argument, xcorr(g,h,maxlag), to 
restrict the range of lags computed to ­maxlag to maxlag. Then the maxlag+1 
element corresponds to zero lag. 

The default is the unnormalized correlation given above, but there is also a normal­
ized version that looks like 

Qxy 1 
m

j = xiyi+j
m 

i=1 

To compensate for boundary effects, the form 

Qxy 1 
m

j = xiyi+j
j

i=1 
m − | | 

is sometimes preferred. Both forms can be obtained through the appropriate options to 
the xcorr command. 

7 Two examples 

The autocorrelation of a sine wave. The period should be evident. 
The autocorrelation of Gaussian random noise. There is a peak at zero, while the 

rest is small. As the length of the signal goes to infinity, the ratio of the sides to the 
center vanishes. If the autocorrelation of a signal vanishes, except at lag zero, we’ll 
call it white noise. The origin of this term will become clear when we study Fourier 
analysis. 

8 Spike­triggered average 

I define the spike­triggered average as 

ρisi+jiCj = � 
ρkk 

This is the cross­correlation of the spike train and the stimulus, normalized by the num­
ber of spikes. Note that Dayan and Abbott define the spike­triggered average with the 
opposite sign in the time lag. However, they also graph it with the time axis reversed, 
so their graph looks the same as mine would! 

You can think about this as taking a snapshot of the stimulus triggered by each 
spike, and then averaging the snapshots together. This gives an idea of what stimulus 
waveform is most effective at causing a spike. 
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