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In this lecture,we’ll learnabouttwo mathematicaloperationghat arecommonly
usedin sigral processingconvolution and correlation The corvolution is usedto
linearly filter a signal,for exampleto smootha spke train to estimateprobability of
firing. Thecorrelationis usedto characterizeéhe stdistical dependeciesbetweertwo

signals.

A few wordsaboutthebig picture. Thepreviouslecturediscussedhow to construct
a linear modelrelatingfiring rate and stimulus at a singletime. In the next lecture,
convolution and correlationwill be usedto constructlinear modelsthat relateneural
firing rateto a stimulus,but at multiple times.

1 Convolution

Let's considertwo time series, g; andh;, wheretheindex ¢ runsfrom —oo to co. The
corvolution of thesetwo time seriesis definedas

(g*h)i = Z gi—jh; 1)

This definitionis applicableto time seriesof infinite length. If g andh arefinite, they
canbe extendedto infinite length by addingzerosat bothends.After thistrick, called
zeropadding,the definitionin Eq. (1) becomesapplicable. For example,the sumin
Eq. (1) becomes

n—1
(g*h)i = Z gi—jh; 2)
=0

for thefinite time serieshg, ..., hy—1.

Exercisel Corvolutionis commutativeandassociativeProvethatg « h = h x g and
fx(gxh)=(f*g)xh.

Exercise2 Corvolution is distributive over addition. Prove that (g1 + g2) x h =
g1 * h + g2 x h. Thismeanghatfiltering a signalvia corvolutionis a linear operation.

Althoughg andh aretreatedsymmetricallyby theconvolution, they generallyhave
very differentnatures.Typically, oneis a signalthatgoeson indefinitelyin time. The



otheris concentratedeartime zero,andis calledafilter. Theoutputof theconvolution
is also a signal, a filtered version of the input signal.

Notethatfiltering asignalvia convolutionis alinearoperation.Thisis animportant
property,becauset simplifiesthe mathematics.Thereare alsononlinearmethodsof
filtering, but theyinvolve moretechnicaldifficulties. Becauseof time limitations, this
classwill coverlinearfilters only. Accordingly, we will discussonly neurobiological
exampledor whichlinearmodelswork well. But theseexamplesareexceptiongo the
rule that mosteverythingin biology is nonlinear. Don’t jump to the conclusionthat
linear models are always sufficient.

In Eq. (2), we choseh; to be zerofor all negativei. Thisis calleda causalfilter,
becauseg « h is affectedby & in the presentand past,but not in the future. In some
contexts the causalityconstraintis notimportant,andonecantakeh_,;, ..., hy to
be nonzero, for example.

Formulasare nice and compact,but now let's draw somediagramsto seehow
convolutionworks. To takea concreteexample assume causafilter (ho, ..., h,—1).
Thentheith componenbf theconvolution(g x h); involvesaligningg andh thisway:

9i—m—-1 Yi-m Yi-m+1 - Gi—-2 YGi—-1 Gi Gi+1 YGi+2
0 0 Ron—1 ho hy ho 0 0

In words, (g * h),; is computedby looking at the signalg througha window of length
m startingat time ¢ andextendingbackto time i — m + 1. Theweightedsumof the
signals in the window is taken, using the coefficients given by h.

If thesignalg hasafinite length,thenthediagramlooksdifferentwhenthewindow
sticks out over the edges. Considera signal gg, ..., g.m—1. Let's considerthe two
extremecasesherethewindowincludesonly onetime bin in thesignal. Oneextreme
is (g * h)o, which can be visualized as

0 0 go 91 - YGn-1 0
hm-1 -+ hi hg 0 O 0 0

The other extreme is (g h).,+n—2, Which can be visualized as

go 01 e In—1 te 0 0 0
0 0o - hm—l - hl hO 0

Therefore g« h has m+ n — 1 nonvanishing components.

2 Using the MATLAB conv function

If g0,91,---,90m—1 @andhg, hy ..., hy_1 aregiven asargumentgo the conv func-
tion, thenthe outputis fo, f1,..., fu+n—2, Wheref = g x h. More generally,if
gy, - -5 9um, andhy,, ..., hy, aregiven asargumentgo the conv function, then
the outputis far,+n,,---, fa,+n,. In otherwords, shifting eitherg or & in time is
equivalent to shifting & h in time.

For example,supposethat g is a signal, and i representsan acausafilter, with
Ny < 0andN;y > 0. Thenthefirst elemenif f returnedby conv is fas, +n,, andthe



lastis far,+n,. Sodiscardingthefirst | V;| andlast N, elementf f leavesus with
fasys - - fa,. Thisis time-alignedwith the signalgay,, - - -, ga,, andhasthe same
length.

Anothermotivationfor discardingelementsat the beginningandendis thatthey
may be corruptedby edgeeffects. If you arereally worried aboutedgeeffects,you
may have to discard even more elements, which will leagagftter than g

3 Firing rate

Consider a spike trainyp. . ., py. One estimate of the probability of firing is
1
pP= Z pi 3

This estimatds satisfactoryaslong asit makessenseo describghewhole spiketrain
by asingleprobabilitythatdoesnot vary with time. Thisis anassumptiorof statistical
stationarity.

More commonly,it's a bettermodelto assumehat the probability variesslowly
with time (is nonstationary).Thenit's betterto apply somethindike Eq. (3) to small
segmentof the spike train, ratherthanto the whole spike train. For example,the
formula

pi = (pig1 +pi +pi-1)/3 (4)

estimates the probability at timeoy counting the number of spikes in three time bins,
andthendividing by three.In thefirst problemset,you wereinstructedto smooththe
spiketrain like this, butto usea muchwider window. In general choosingthe size of
window involvesa tradeoff. A largerwindow minimizesthe effectsof statisticalsam-
pling error(like flipping acoin manytimesto moreaccuratelydeterminets probability
of comingup heads)But alargerwindow alsoreducegheability to follow morerapid
changes in the probability affanction of time.

NotethatEq.(4) isn't to betrustedneartheedgef thesignal,asthefilter operates
on the zeros that surround the signal.

Thereareothermethoddor estimatingprobability of firing, manyof which canbe
expressed in the convolutional form,

pi = Z Pi—jWj
J

wherew satisfiesthe constraint) . w; = 1. Accordingto this formula, p; is the
weightedaverageof p; andits neighborssothat0 < p; < 1. Closelyrelatedis the
firing rate per unit time,

_ bi

At

whereAt is thelengthof atime bin, or samplinginterval. Probabilisticnodelsof neu-
ral activity will betreatedmoreformally in alaterlecture,andwe’ll exampleconcepts
like firing rate more critically.

Vi



Thereare many different waysto choosew, dependingon the particularsof the
application.Previouslywe chosew be of lengthn, with nonzerovaluesequalto 1/n.
This is sometimegalleda “boxcar” filter. MATLAB comeswith a lot of otherfilter
shapes.Try typing help bartlett, andyou’ll find more information aboutthe
Bartlett and othertypesof windowsthat are goodfor smoothing. Dependingon the
context,you might want a causalor a noncausafilter for estimatingprobability of
firing.

Another option is to choose thernel to be a decaying exponential,

W — 0, A 7 <0
7T - 520

This is causal, but has infinithuration.

Exercise 3 Prove that the exponential filter is equivalent to

pi = (1 —=7y)pi1 +ypi

4 Impulse response

Consider the signal consisting of a single impulse at time zero,
N
: 0, j#0
The convolution of this signal with a filter & is

(5 * h)z = Z(Sj—khk = hj
k

which is just the filter h» again. In otherwords h, is the responseof the filter to an
impulse,or the impulseresponsdunction. If theimpulseis displacedrom time O to
time 4, then the result of the convolution is the filter h, displaced Liyné steps.

A spiketrainis just a superpositiorof impulsesat differenttimes. Therefore con-
volving a spike train with a filter gives a superposition of filters at different times.

Elsewhereyou may haveseernthe “Kroneckerdelta” notationd; ;, which is equiv-
alentto é,_;. The Kroneckerdeltais just the identity matrix, sinceit is equalto one
only for the diagonaklements = j. You canthink aboutconvolutionwith §; asmul-
tiplication by theidentity matrix é;;. More generallythefollowing exerciseshowsthat
convolution is equivalent to multiplication of a matrix and a vector.

Exercise 4 Matrix form of convolution. Showthat the convolutionof gg, g1, go and
ho, h1, ho can be written as

gxh=Gh
where the matrix G is defined by

go 0 0
g1 go O
G=1| 92 91 9 %)

0 g a1
0 0 ¢



and gx* h and h are treated as column vectors.

Exercise 5 Eachcolumnof G is thesameimeseries putshiftedby a differentamount.
Use the MATLABunction convmtx to create matricedike G from time seriedike g.
This function is found in the Signal Processing Toolbox.

If youdon't havethis toolboxinstalled,youcan makeuseof thefact thatEqg. (5) is
a Toeplitzmatrix, and can be constructedy giving its first columnandfirst row to the
toeplitz command in MATLAB.

Exercise 6 Convolutionas polynomialmultiplication. If the seconddegreepolynomi-
alsgo + g1z + g22% andhg + h1z + ho2z? are multipliedtogethertheresultis a fourth
degreepolynomial. Let’s call this polynomial fo + f1z + fo22 + f323 + f4z*. Show
that this is equivalent tg' = g « h.

5 Correlation

The correlation of two time series is

Corr[g, hl; = Z gihiy; (6)

1=—00

Thecasej = 0 correspondso the correlationthatwasdefinedin thefirst lecture.The
differencehereis thatg andh arecorrelatedat timesseparatedby thelag j. Notethat
is the conventionfollowed by Dayanand Abbott. Someotherbooks,like Numerical
Recipes, call the above sum Corrf};. This can be confusing.

As with the convolution this definitioncanbe appliedto finite time seriesby using
zeropadding.Notethat Corr[g, h]; = Corr[h, g]_;, sothatthe correlationoperation
is notcommutative Typically, thecorrelationis appliedto two signalswhile its output
is concentrated near zero.

The zero lag case looks like

0 g1 g2 -+ gn O
0 hy hy --- h, O

and the other lags correspotaisliding 4 right or left.

The autocorrelations a specialcaseof the correlation,with g = h. If g # h, the
correlationis sometimesalledthe crosscorrelatiomo distinguishit from the autocor-
relation. In thefirst lecture,we distinguisheetweercorrelationandcovarianceThe
covariancevasdefinedasthe correlationwith the meanssubtracteaut. Similarly, the
cross-covariancean be definedasthe correlationleft betweentwo time seriesafter
subtractingoutthe means Theauto-covariancés a specialcase. Thecommandkcov
can be used for this purpose.

Exercise 7 Provethattheautocorrelationis thesamefor equalandoppositetimelags
+5.



6 Using the MATLAB xcorr function

If ¢ andh are n-dimensionalvectors,thenthe MATLAB commandxcorr(g,h)
returnsa2n — 1 dimensionalector,correspondingo thelagsj = —(n — 1) ton + 1.
Lagsbeyondthis rangearenotincluded,asthe correlationtrivially vanishes.Thenth
element of the result corresponds to zero lag.

Oneirritation is that MATLAB 5 and6 follow differentconventionsMATLAB 5
calls Eq. (6) xcorr(g,h), while MATLAB 6 callsit  xcorr(h,g).

A maximumlag canalso be given asan argumentxcorr(g,h,maxlag), to
restrictthe rangeof lags computedto -maxlag to maxlag. Thenthe maxlag+1
element corresponds to zero lag.

Thedefaultis theunnormalizectorrelationgivenabove putthereis alsoanormal-
ized version that looks like

m
Ty ]'
Qj = E TilYitj
i=1

To compensate for boundary effects, the form

m
Qj = - LiYi+j
=1

m — |4

is sometimegpreferred Both formscanbe obtainedhroughthe appropriateoptionsto
the xcorr command.

7 Two examples

The autocorrelation of a sine wavehe period should be evident.

The autocorrelatiorof Gaussiarrandomnoise. Thereis a peakat zero,while the
restis small. As thelengthof the signalgoesto infinity, theratio of the sidesto the
centervanishes.If the autocorrelatiorof a signalvanishesgxceptat lag zero,we’'ll
call it white noise. The origin of this termwill becomeclearwhenwe study Fourier
analysis.

8 Spike-triggered average

| define the spike-triggered average as

c, = 2 PiSitj
Zk Pk
Thisis thecross-correlationf thespiketrain andthestimulus,normalizedoy thenum-
berof spikes.Note that DayanandAbbott definethe spike-triggeredaveragewith the
oppositesignin thetime lag. However,they alsographit with thetime axisreversed,
so their graph looks the same as mine would!
You canthink aboutthis astaking a snapshobf the stimulustriggeredby each
spike,andthenaveraginghe snapshotsogether.This givesanideaof whatstimulus
waveform is most effective atausing a spike.



