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1 What is computational neuroscience?

Theterm“computationaheurascience™hastwo differentdefinitions:
1. usingacomputerto studythebrain
2. studyingthebrainasa computer

In thefirst, the field is definedby a technique.ln the secondit is definedby anidea.
Let'sdiscusghesetwo definitonsin moredepth.

Why usea computerto studythe brain? The mostcompellingreasonis the tor-
rentialflow of datageneratedby neurghysiology experiments Todayit is commonto
simultaneouslyecordthe signalsgeneratedy tensof neuramsin anawake behaing
animal. Oncethe measuremenis done,the neuroscientismustanalyzethe datato
figureoutwhatit meansandcomputersarenecessarfor thistask. Computerarealso
usedto simulate neuralsystems.This is importantwhenthe modelsare comple, so
thattheir behaiors arenot obviousfrom mereverbalreasoning.

Onto theseconddefinition. Whatdoesit meanto saythatthe brainis a computer?
To grasp this ideawe mustthink beyond our desktopcomputerswith ther glowing
screens.The abacuds a computer andso s a slide rule. What do theseexamples
have in common? They are all dynamicalsystems but they are of a specialclass.
What'’s specialis thatthe stateof a computerrepresentssomethingelse. The statesof
transistorsn your computers display memoryrepresenthe words and picturesthat
aredisplayedonits screen.Thelocationsof thebeadson aabacusepresenthe money
passingthrougha shopleepers hands. And the activities of neuronsin our brains
representhethingsthatwe senseandthink about.In short,

computation= coding+ dynamics

The two termson the right handside of this equationarethe two greatquestions
for computationaheurosciencetHow arecomputationalariablesareenmdedin neu-
ral activity? How do the dynamicalbehaiors of neuralnetworks emerge from the
propertief neurons?

Thefirst half of this coursewill addresghe problemof encoding,or representa-
tion. The secondhalf of the coursewill addresshe issue of braindynamics, but only
incompletely The bioptysics of single neuronswill be discussedbut the collective
behaiors of networksareleft for my otherclass9.641NeuralNetworks.



2 Neural coding

As an introductionto the problemof neural coding, let me showyou a video of a
neurophysiologyexperiment.This video comesfrom the laboratoryof David Hubel,
whowon theNobelprizewith his colleagueTorstenWieselfor their discoveriesn the
mammalian visual system.

In the video, you will seea visual stimulus,a flashedor moving bar of light pro-
jectedonto a screen.This is the stimulusthat is being presentedo the cat. You will
alsohearthe activity of a neuronrecordedrom the cat’sbrain. | shouldalsodescribe
whatyou will notseeandhear.A cathasbeenanesthetizedndplacedin front of the
screenwith its eyelidsheldopen.Thetip of atungsterwire hasbeenplacedinsidethe
skull, andlodgednextto aneuronin avisualareaof the brain. Althoughthe catis not
consciousneurondn this areaarestill responsiveo visualstimuli. Thetungsterwire
is connectedo anamplifier,sothatthe weakelectricalsignalsfrom the neuroncanbe
recorded Theamplifiedsignalis alsousedto drive aloudspeakem@ndthatis the sound
that you will hear.

As playedon theloudspeakerthe responsef the neuronconsistsof brief clicking
sounds. Theseclicks aredueto spikesin the waveformof the electricalsignalfrom
the neuron. The moretechnicalterm for spike is action potential. Almost without
exception, such spikes are characteristic of neural activity in the vertebrate brain.

As you canseeandhear thefrequencyof spikingis dependentn the propertief
thestimulus.Theneuronis activatedonly whenthebaris placedataparticularocation
in thevisualfield. Furthermoreit is moststronglyactivatedwhenthebaris presented
at a particularorientation. Arriving at sucha verbalmodelof neuralcodingis more
difficult thanit may seemfrom the video. David Hubel hasrecountechis feelingsof
frustration during his initial studies of the visual cort&ar along time, he used spots
of light asvisual stimuli,because¢hat hadworked wellin his previousstudies ofother
visualareasof thebrain. But spotsof light evokedonly feebleresponsefrom cortical
neurons.The spotsof light wereproducedy akind of slide projector.OnedayHubel
waswrappingup yet anotherunsuccessfuéxperiment.As he pulled the slide out of
the projector,he heardan eruptionof spikesfrom the neuron. It wasthatobservation
thatled to the discoverythat cortical neuronswere mostsensitiveto orientedstimuli
like edges or bars.

The study of neuralcodingis not restrictedto sensoryprocessing.One canalso
investigatethe neuralcodingof motorvariables.In this video,you will seethe move-
mentsof a goldfisheye,andhearthe activity of a neuroninvolvedin control of these
movementsThe oculomotorbehaviorconsistf periodsof staticfixation, punctuated
by rapid saccadianovements.The rate of action potentialfiring during the fixation
periods is correlated with theorizontal position of the eye.

Finally, someneuroscientiststudy the encodingof computationalariablesthat
can't be classifiedas either sensorynor motor. This video showsa recordingof a
neuronin aratasit movesabouta circulararena.Neurondike this aresensitiveto the
directionof therat’s headrelativeto the arenaandarethoughtto be importantfor the
rat’s ability to navigate.

Verbalmodelsarethefirst steptowardsunderstandingieuralcoding. But compu-
tational neuroscientistglo not stopthere. They strive for a deeperunderstandindy



constructingnathematicallyprecise guantitativemodelsof neuralcoding. In the next
few lecturesyouwill learnhowto construcsuchmodels.But first youhaveto become
familiar with the format of data from neurophysiological experiments.

3 Outline of the first part of the class

convolution and correlation

Wiener-Hopf equations

1.

2.

3. visual receptive fields

4. fourier analysis and thauditory system
5.

probabilistic models o$pike trains

4 Discretely sampled data

For your first homeworkassignmentyou will be given datafrom an experimenton
the weakly electricfish Eigenmannia.The fish hasa specialorganthat generatesn
oscillatingelectricfield with a frequencyof severalhundredHz. It alsohasan elec-
trosensoryorgan,with which it is ableto sensdits electricfield andthefields of other
fish. The electric field is usefbr electrolocation and communication.

In the experimentthe fish was stimulatedwith an artificial electricfield, andthe
activity of a neuronin the electrosensorprganwasrecorded. The artificial electric
field wasanamplitude-modulatedinewave,muchlike the naturalelectricfield of the
fish. Thestimulusvectors; in thedatasetontainghemodulationsignalsamplecevery
0.5ms.

The extracellularvoltage waveformwas an analogsignal. In sucha recording,
actionpotentialsaresubmillivolt events.Somesortof patterndetectoris appliedto the
waveformto locateaction potentials. A primitive choiceis a thresholddetector,but
morecomplexdetectoranakeuseof the detailedshapeof the waveform. In this way,
ananalogvoltagesignalis processeéhto abinaryresponseectorp; thatcontainsthe
spiketrain of the neuron.lts componentareeitherzeroor one,indicatingwhetheror
not a spike occurred during eaBtb ms time bin.

5 Firing rate

In Figurel the stimulusamplitudeis plottedversugime. Overlaidon top of this graph
is the spiketrain. Inspectionof this figurerevealghatthe frequencyof actionpotential
firing increases when the stimulus increases.

To quantifythisrelationshipjt is necessaryo transformthe binaryvectorp; into a
firing rateor relatedquantity. For example pnecancomputethe numberof spikesin a
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Figure 1:Spike train and stimulus amplitude versus time.



window of length 2+ 1 centered at 4.

M
n; = Z Pi+j

j=—M

This islike dragging a windovacrosghe spike trainand keeping track ahe number
of spikes in the window at ea¢hme.
Dividing n; by the length of the window 24 1 yields the probability of firing

1 M
pi = 72M+1 Z Pi+j
j=—M

per time bin.Alternatively, onecan define the firing rate

1 M
Vi= oo A, Z Pi+j
@M+ 1AL =

where At is the samplinginterval. Assumingthat the samplinginterval is given in
seconds, this gives rate in spikes per second, or Hz.

The abovecomputationsanbe implementedusingthe conv operationin MAT-
LAB, as will be explained in ater lecture and in the homework assignment.

Note that there are many othaefinitions of firing rateThis is just a simple one.

6 A linear model

If the pairs(s;, p;) areplottedaspointson a graph,a linearrelationshipcanbe seen.
Theslopeandinterceptof theline canbefoundby optimizingthe approximatiorp; ~
a + bs; with respect to the parameterand b.

Soin this case,the neuralcoding problemcan be addressedby simply fitting a
straightline to datapoints. Thisis probablythe mostcommonway to fit experimental
datain all of the sciencesBeforewe describethe techniquebelow, let’s pauseto note
thatthis is a very simpledataset.The stimulusis a scalarsignalthat varieswith time.
More generally,a vectormight be requiredto describethe stimulusat a giventime, as
in the caseof a dynamicallyvaryingimage. The neuralresponsenight alsobe more
complicatedjf the experimeninvolved simultaneousecordingof manyneuronsBut
evenin thesemorecomplexcasesit is sometimepossibleto constructalinearmodel.
Whenwe do so later, we will seethatsomeof the simple conceptdntroducedbelow
can be generalized.

7 Fitting a straight line to data points

Supposehat we are given measurementér;, y;), wherethe index: runsfrom 1 to
m. In the contextof the previousexperimentthe measurementare (s;, p;). We have



simply switchednotationto emphasizehe generalityof the problem. Our taskis to
find parameters a and b so that the approximation

is asaccuratexspossible Notethatit is notgenerallypossibleo find a andb sothatthe
errorvanishescompletely. Therearetwo reasondor this. First, measuremerdrenot
exact,but sufferfrom experimentakrror. Secondwhile linear modelsareoftenused
in computationaheurosciencethe underlyingbehavioris not truly linear. Thelinear
modelis just anapproximation.Note thatthis is unlike the caseof physics,wherethe
proportionality of force and acceleration F'ma) is considered a true “law.”

While therearemanywaysof finding anoptimala andb, the canonicaloneis the
method of least squarelis starting point is the squared error function

E=

%

(a4 bx; —y;)? (2)

m

N |

1

which quantifiesthe accuracyof the modelin Eq. (1). If £ = 0 themodelis perfect.
Minimizing E with respecto a andb is areasonablevay of finding the bestapproxi-
mation.SinceF is quadratidn a andb, its minimumcanbefoundby settingthepartial
derivatives with respect te and b equal to zero.

Setting 0E/da= 0 yields

0 :maerZM *Zyi
while setting 0E/0b= 0 produces
0 = Z(a + bxi — yi)w; 3
= ain+be?nyixi (4)
Rearranging slightly, we obtaitwo simultaneous linear equations in two unknowns,
ma—|—wai = Zy,- (5)
aZxri—bzw? Zyixi (6)

As a shorthand for the coefficients of these linear equations, it is helpful to define

1 m 1 m
(z) = - ;% (%) = - ;%2 (7)
(y) = % Z Yi (zy) = %Z TiYi 8
=1 =1



The quantity (x) is known asthe meanor first momentof =, while (2) is knownas
the second momenthe quantity(zy) is called the correlation of and y
With this new notation, the equations for a and b take the compact form

a+b(x) = (y) ©)
alz) +b(z%) = (xy) (10)

We can solve for a in terms of b via

a=(y) —bz) (11)
This can be used to eliminatecompletely, yielding

_ (zy) = () {y)
b= e

Backsubstituting this expression in Eq. (11) allows us to solve for a

Thenumeratoranddenominatoin Eq. (12) havespecialnames.The denominator
() — (x)? is calledthe varianceof z, becausdt measuresiow muchz fluctuates.
Notethatif all thex; areequalto alargeconstantC, thesecondnoment(z?) = C? is
largealso. In contrastthe variancevanishesompletely. The meaningof the variance
is also evident in the identity

(12)

((62)%) = (2?) — (2)?

whichyou shouldverify for yourself. This equationsaysthatthevarianceis thesecond
momentof éx = = — (x), which is the deviationof = from its mean. The standard
deviationis anothertermthatyou shouldlearn. It is definedasthe squareroot of the
variance.

Thenumeratorzy) — (z)(y) in Eq. (12)is calledthe covarianceof = andy. It is
equal to the correlation of the fluctuations dx and dy

(6xdy) = (zy) — (x)(y)

Again, | recommend that you verify this identity on your own.

In summary,we havea simple recipefor a linear fit. Computethe covariance
Cov(z,y) of z andy, andthe varianceVar(z) of 2. Theratio of thesetwo quantities
gives the slope b of the linear fithen compute: by Eq. (11).

Substituting Eq. (11) in the linear approximation of Eq. (1) yields

yi = (y) = b(w; — (7))

In otherwords, the constanta is unnecessanyf the linear fit is doneto éx anddy,
ratherthanto = andy. Giventhis fact, oneapproachs to computethe means(z) and
(y) first, and subtract them from the data to get = and¥hen apply the formula

(0zdy)

b= 602




which s equivalentto Eq. (12). Thetrick of subtractinghe meancomesup overand
over again in linear modeling.
Someof you may alreadyhaveencounteredhe correlationcoefficientr, which is

defined by

_ (zy) — () (y)

V{z?2) = @)/ () — ()2

You mayhavelearnedthatr closeto +1 meanghatthelinearapproximatioris agood
one. Thecorrelationcoefficientis similar to the covariancegxceptfor the presencef
the standarddeviationsof « andy in the denominator.The denominatomormalizes
thecorrelationcoefficient,sothatit mustlie between—1 and1, unlike the covariance,
which cantakeon anyvaluein principle. If you knowthe Cauchy-Schwarimequality,
you can use it to prove thatl < r < 1, but this is not so illuminating.

Thecorrelationcoefficientcanbeinterpretecasmeasuringhereductionin variance
thatcomedrom takingalinear (first-order)modelof thedata,asopposedo aconstant
(zeroth-orderymodel. Recallthatthe squarederror of Eq. (2) measureshe variance
of the deviationof the datapointsfrom the straightline. This variancevanishesonly
when the model is perfect.

For the bestzeroth-ordemodel,we constrainb = 0 in Eq. (2), sothat E is min-
imizedwhena = (y), taking a value proportionalto the varianceof y. Forthe best
first-ordermodel, E is minimizedwith respecto botha andb, sothatits optimalvalue
is furtherreduced Theratio of thenew E totheold E is 1 —r2. Anotherway of saying
it is thatr? is thefractionof thevariancen y thatis explainedoy thelineartermin the
model.




