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1 The law of effect 

Thorndike was a pioneer in the scientific study of animal learning. He devised the 
puzzle box as an experimental method. A special cage was constructed, such that a 
special sequence of actions was required to open its door. The animal was repeatedly 
placed in the cage, and the time to escape was tabulated. A graph of the escape time 
as a function of the number of trials was called a learning curve. Thorndike observed 
that the animals seemed to learn by a process of trial and error. By generating random 
actions while in the cage, occasionally they would happen to generate the specific 
sequence of actions that caused the door to open. This sequence became reinforced by 
success, so that it became more likely to recur in the future. By this process, the animal 
learned to reduce its escape time. 

Thorndike sought to place psychology on an axiomatic foundation, and wrote down 
several laws of learning. One of them was the law of effect: 

Of several responses made to the same situation those which are accom­
panied or closely followed by satisfaction to the animal will,  other things 
being equal, be more firmly connected with the situation, so that, when 
it recurs, they will  be more likely to recur; those which are accompanied 
or closely followed by discomfort to the animal will,  other things being 
equal, have their connections to the situation weakened, so that, when it 
recurs, they will  be less likely to occur. The greater the satisfaction or 
discomfort, the greater the strengthening or weakening of the bond. 

The law of effect inspired further work on animal learning that eventually led to 
the behaviorist school of psychology. The study of learning from reinforcement was 
eventually formalized in the paradigm of operant or instrumental conditioning. 

2 Variable­interval (VI)  schedule 

In operant conditioning, an animal is trained by making reward contingent on a desired 
behavior. In the laboratory, there are many methods of creating such contingency. B. F. 
Skinner and collaborators called these reinforcement schedules, and catalogued many 
of them. 
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In a variable­interval (VI) reinforcement schedule, rewards are made available at a 
target that is chosen by an animal. For example, pigeons choose a key by pecking at it. 
Some of these pecks are reinforced by food reward. In a VI schedule, the rewards have 
constant amplitude and are made available at the target at random times. 

A target has two possible states: baited or unbaited. If the animal chooses an 
unbaited target, it receives nothing. If it chooses a baited target, it harvests the reward, 
and the target switches to the unbaited state. The target is rebaited after a random time 
interval t drawn from the exponential distribution P (t) = τ −1e−t/τ . The average time 
interval is set by the parameter τ . 

Recall that the time intervals between events for a Poisson process are also expo­
nentially distributed. In its use of an exponential distribution, the VI schedule has some 
similarity to a Poisson process. However, note that the baiting times are not Poisson, 
and neither are the harvesting times. It is the time interval between harvesting and 
rebaiting that is exponentially distributed. 

Note that in the special case where the animal chooses the target very frequently, 
it will harvest each reward immediately after it becames available. Then the baiting 
times are approximately Poisson, as are the harvesting times. 

3 Concurrent VI schedule 

In a concurrent VI schedule, the animal is presented with a choice between multiple 
targets. Each target is baited according to a VI schedule. In general, the average 
rebaiting time is different for the targets. Suppose that there are two targets, and that 
the average rebaiting time is shorter for the first target than for the second. Then the 
first target is “rich,” while the second target is “lean.” 

The schedules are all independent, except for one complication, a fixed changeover 
delay. When the animal switches from one target to another, choosing the new target 
does not result in harvesting reward during the changeover delay. 

A changeover delay is natural and inevitable if the targets are placed far apart, so 
that the animal has to traverse some distance in order to switch targets. When the 
targets are close together, a changeover delay can be artificially imposed. Effectively, 
the changeover delay imposes a penalty on switching. 

Without the changeover delay, animals tend to alternate between the targets, allo­
cating their choices equally between them. When the changeover delay is larger than 
some threshold value, then the animal tends to prefer the rich target over the lean. A 
mathematical theory of such preference is given by the matching law. A typical value 
for the changeover delay is 1.5 seconds. 

4 The matching law 

Richard Herrnstein and collaborators trained pigeons using concurrent VI schedules. 
In such an experiment, the pecks of the pigeon at each key were recorded. Also, the 
rewards harvested by the pigeon were recorded. The number of pecks at each key was 
a measure of the pigeon’s preference for that key. Therefore, the experiment made 
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it possible to study how the pigeon’s preferences depended on how its choices were 
reinforced. 

Let N and ¯ N be the number of pecks at the two targets, and H and ¯ H be the 
number of rewards harvested at the two targets. Herrnstein and collaborators found the 
following empirical law: 

H 
= 

N 
¯ N ¯ HN + H + 

Alternatively, this can be expressed as 

N 
¯ N 

H 
¯ H 

= 

They called this the matching law, as the preferences of the pigeon “match” the re­
wards. 

In the language of economics, the number of rewards harvested can be called “in­
come.” Then the matching law can be stated as: 

Choices are in the same ratio as the incomes of the targets. 

For another statement in economic language, rewrite the equation as 

¯ H 
¯ N 

= 
H 
N 

The income from a target divided by the number of pecks can be called the “return,” as 
in “return on investment.” Then the matching law can be stated as: 

The returns from the targets are equal. 

Note that the matching law is not interesting, unless the number of pecks far ex­
ceeds the number of rewards. To see why, suppose the opposite is true. Suppose that 
the VI schedules rebait the targets more quickly than the pigeons can peck. Then every 
peck would be reinforced, so that H = N and ¯ N= ¯ H . The matching law would be 
trivially satisfied. 

In a typical experiment on the matching law, the number of pecks might be one 
hundred times larger than the number of rewards. In this case, large deviations from 
matching are possible in principle, but empirically such deviations are not observed. 

5 VI schedule for discrete trials 

The VI schedule can be formulated for discrete trials. Rewards are made available at a 
target that is chosen by an animal in discrete trials. 

A target has two possible states: baited or unbaited. If the animal chooses an 
unbaited target, it receives nothing. If it chooses a baited target, it harvests the reward, 
and the target switches to the unbaited state. 

If a target is baited at the end of a trial, it remains baited for the next trial. If a 
target is unbaited at the end of a trial (either because reward was harvested, or because 
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the target was unbaited to begin with), then it is rebaited according to the toss of a coin 
with bias p. 

This means that a target is rebaited after a number of trials n drawn from the geo­
metrical distribution P (n) = (1 − p)n−1p. The average n is given by 1/p. If p = 1, 
then the target is rebaited immediately, so that the average n is one. In the limit p → 0 
the time until rebaiting diverges to infinity. 

6 Concurrent VI schedule for discrete trials 

To implement a concurrent VI schedule for discrete trials, a changeover delay is needed. 
This is done by not allowing harvesting of reward in the first trial after an animal 
switches. 

This kind of experiment has been implemented by Sugrue, Corrado, and Newsome. 
Green and red visual targets are presented to a monkey in repeated trials. The monkey 
chooses one of these targets by making a saccadic eye movement. The monkey is 
rewarded with juice. In the experiment, the VI schedule is nonstationary. That is, the 
baiting probability for both targets changes every few hundred trials. This requires the 
monkey to rapidly change its relative preferences for the targets. 

7 A simple learning model 

In the matching law, the choice probabilities are in the same ratio as the incomes. In the 
original research, the matching law was only applied to data aggregated from a single 
long experiment. 

However, the matching law can also be applied to the immediate past to produce a 
simple learning model. In each trial, the model chooses between targets with probabil­
ities set by the ratio of target incomes in the immediate past. 

More formally, suppose there are two targets. The action taken in trial t is indicated 
at, which satisfy at + ¯by the binary variables at and ̄ at = 1. After each action, the 

animal receives reward ht. The incomes in the recent past can be computed by by 

Ht+1 = βHt + (1− β)htat (1) 
¯ ¯ Ht+1 = βHt + (1− β)ht ̄at (2) 

This is like convolving the time series htat by an exponential filter, where the discount 
factor β sets the time constant of the exponential. 

Based on these income histories, the model chooses its action randomly, with odds 
given by 

pt = 
Ht 

¯ p̄t Ht 

Here pt is the probability that at = 1 and p̄t the probability that ̄at = 1. These choice 
probabilities satisfy the constraint pt + p̄t = 1. 

Sugrue et al. found that monkey behavior could be modeled using a relatively short 
time constant of less than ten trials. 
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The model was earlier applied by Erev and Roth to a model of learning to play 
games. 
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