
Problem Set 6 (due Thurs Apr 22)
Extensions of the Hodgkin-Huxley model

April 13, 2003

Download the MATLAB script: cc.m,
which is for simulating the Hodgkin-Huxley model in current clamp. You can read Chapter 5 of Dayan and Ab-
bott for an explanation of the model equations. Note that conductances, capacitances, and currents are given per unit
area. More specifically, capacitances are inµF/mm2, conductances in mS/mm2, and current inµA/mm2. Furthermore,
time is in msec, and voltage in mV.

1. Firing frequency vs. applied current. Modify the code so that you can simulate the response of the HH model to
a step change from zero applied current to positive current.

(a) Simulate the behavior for applied currents of 0.01, 0.05, 0.1, and 5µA/mm2. Start from the initial condi-
tions given in the code. For each case, graph the voltage vs. time, and describe in words the behaviors that
you see.

(b) You described four qualitatively different behaviors above. Find the three threshold values of the current
that separate these four types of behavior. In other words, there is some value of the applied current below
which behavior 1 holds, and above which behavior 2 holds. And so on for the other thresholds.

(c) One of the four types of behavior you should have described above is convergence to repetitive firing of
action potentials that continues indefinitely. What is the minimum frequency of such firing? What is the
maximum frequency? Can you explain why repetitive firing is impossible above this maximum?

2. The MATLAB code is provided with initial conditions forV , m, h, andn, which are approximately the fixed
point of the HH model at zero applied current. In this problem, you’ll explore the effects of varying the initial
conditions.

(a) Change the initial condition forV so that it is 5 mV higher the value given in the code, and simulate for
100 msec. Graph the resultingV as a function of time. You will see that the model settles back to the fixed
point without much ado.

(b) Now change the initial condition forV so that it is 10 mV higher the value given in the code, and simulate
for 100 msec. Graph the resultingV as a function of time. Now you will see an action potential before the
model settles back to the fixed point.

(c) Approximately determine the threshold voltage above which an action potential is evoked, and below
which one is not evoked.

3. Post-inhibitory rebound. Experiment with the following stimulation: start with zero applied current, step to a
negative value, and then step back to zero. Find an amplitude and duration of the negative step such that the HH
model fires an action potential afterwards, a phenomenon known as post-inhibitory rebound. PlotV , m, h, and
n as a function of time. Explain in words why this phenomenon happens.

4. Write MATLAB code to simulate the Connor-Stevens model and reproduce Figure 6.1 of Dayan and Abbott.
You can use the above code for the Hodgkin-Huxley model as a starting point. To debug your code, use the
fact that the model should converge to the steady stateV = −68 mV, m = 0.0101, h = 0.9659, n = 0.1559,
a = 0.5404, andb = 0.2887, if the applied current is zero.
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5. Download B. Ermentrout, Linearization of F­I curves by adaptation, Neural Comput.	 10:1721­9 (1998) 
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Note: The basic model described in Section 4.1 has the same equations as the Hodgkin­Huxley model, but 
with different parameters. It is inspired by Traub’s model of hippocampal neurons. The adaptation current can 
be interpreted in a number of ways. Ermentrout calls it an M­current, after the muscarine­sensitive potassium 
current. It could also be interpreted as a slow inhibitory autapse with a time constant of 100 ms. An autapse is a 
synapse made by a neuron onto itself. Finally, it could be regarded as a simplified model of calcium­dependent 
potassium current. In that case, the variable z would represent calcium concentration. An explicit model for the 
accumulation of calcium is given in Section 4.2 of the paper. 

6.
 
Change the reversal potential of the adaptation current to 0, and let g = 0.01 mS/mm2. Show that the resulting 
model is bistable with zero applied current. This means that there are two stable states, one quiescent and the 
other firing. More specifically, you can demonstrate bistability by showing that it is possible to toggle between 
the two states using transient current pulses. For example, you could start with the neuron at rest, and then 
apply a transient depolarizing current pulse that causes the neuron to fire repetitively even after the pulse is over. 
Then you could apply a transient hyperpolarizing current pulse that causes the neuron to stop firing and remain 
quiescent even after the pulse is over. Explain in words the reason for this bistability. 

Note: Here the extra current can be interpreted more than one way. There is some resemblance to a persistent 
calcium current (though the reversal potential is too low). It is also like a slow excitatory autapse with a time 
constant of 100 ms. 
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