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1. The membrane capacitance of a typical cell is 1 µF/cm2 (i.e., 10−6 uncompensated coulombs of charge on each 
side of 1 cm2 of membrane are needed to produce 1 V across the membrane). Suppose that the concentrations 
of ions inside and outside the cell are about 0.1 M, and that the cell is spherical with radius 10 µm. 

(a) How many ions of surface charge are required to produce a transmembrane potential of 100 mV? These 
are called “uncompensated ions”,  because they violate space­charge neutrality. 

(b) What is the total number of ions inside the cell? 

(c) What is the ratio of the number of uncompensated ions to the total number of ions? 

The last number should be small, justifying my statement in lecture that space­charge neutrality is a very good 
approximation in neurons. Also, it means that we can treat ionic concentrations as constant in time, even though 
the membrane potential and amount of surface charge may vary rapidly in time. 

2. A membrane is permeable to K+ and Cl−, but not to a large organic ion R+ . Inside the membrane, the initial 
concentrations of RCl and KCl are both 150 mM. Outside the membrane, the initial concentration of KCl is 300 
mM, while that of RCl is zero. 

(a) What are the final concentrations of R+, K+, and Cl− on each side of the membrane at equilibrium? 

(b) What is Vm at equilibrium? 

(c) Will  there be any osmotic pressure? If  so, in which direction? 

Hint: At Donnan equilibrium, the Nernst potentials of potassium and chloride must be the same. 

3. The drawing below depicts the business end of a glass capillary microelectrode. The hole at the tip has radius 
r0, and the radius r increases linearly away from the hole. 

Microelectrodes 1-3

solutions are also doing to the potential offset of the reference electrode!  See Neher, (1992)1 for a
pithy introduction to liquid junction effects and measurements.

A high concentration of KCl is ideal as a microelectrode solution if you want to avoid LJ
potentials.  This is because K+ and Cl– have almost identical diffusion constants, and if the
concentration in the pipette is high, the efflux of K+ and Cl– from the pipette will be much larger,
and will effectively swamp out, any influx of the ions that are outside.

ELECTRODE RESISTANCE

In order to pass a current I through a microelectrode, you have to apply a voltage V to force the ions
to move in the pipette.  The resistance is the ratio of the voltage applied across the pipette to the
current I that is elicited,

R = 
V
I .

The resistance of a cylinder of conducting substance like this

x

A

is given by

R = 
ρ l
A

where l is the length, A the area, and ρ is the restivity of the substance.  Now consider the resistance
of the conical interior of a microelectrode:

dx

r
r0

The resistivity of a slab of length dx is

dR = 
ρ dx

πr2
 .

Notice that the incremental resistance at the tip is much larger than up the shank where r is greater,
because of the 1/r2 dependence.  The total resistance is the integral of dR over all x values.  To do
this, first we must have a relationship between r and the x coordinate.  Let

r = kx

so that k represents the steepness of the taper of the pipette.  Then the total resistance R (letting the
cone be infinite in length, since it makes little difference to the resistance) is

1E. Neher, Correction for liquid junction potentials in patch clamp experiments.  Methods in Enzymology 207, 123-131, 1992.

(a) What is the resistance dR of the slab shown in the figure, in terms of the thickness dx, radius r, and 
resistivity ρ of the electrolyte? From this result, it should be clear why the tip dominates the total resistance 
of the electrode. 

(b) Let r = kx, so that k represents the steepness of the taper of the pipette. Calculate the total resistance R 
by integrating dR from x = r0 to x = ∞. You can make the approximation that the cone above extends 
to infinity, rather than turning into a cylinder, which would be more realistic. This makes little difference 
to the result, since the resistance is dominated by the tip. Your answer should be inversely proportional to 
the hole radius r0 and to the steepness of the taper k. 
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(c) Typical values for a patch electrode are ρ = 100 Ω cm, r0 = 0.5 µm and k = 0.2. Substitute these values 
into your expression for R, to find the electrode resistance. Your result should be on the order of M Ω. 

4. The integrate­and­fire neuron is a simple model of spiking behavior that sacrifices biophysical realism for 
mathematical simplicity. Below threshold, the membrane potential V obeys the differential equation 

dV 
Cm = −gL(V − VL) − gsyn(V − Vsyn) + Iapp (1)

dt 

If V reaches a threshold Vθ, then the neuron is said to spike, and V is instantaneously reset to a value of V0, 
where V0 < Vθ . The term Iapp models the current injected through an experimenter’s microelectrode. The 
equation above is like Eq. (5.7) in the Dayan and Abbott book, though with slightly different notation. Also, 
I’ve added an extra term that models synaptic input as the product of a synaptic conductance gsyn, and a driving 
force that depends on the reversal potential Vsyn. Let’s consider the case of an excitatory synapse, so that Vsyn 

is above Vθ . 

(a) Response as a function of applied current Iapp, with no synaptic input (gsyn = 0). 

i. Determine the threshold current Iθ (or rheobase) below which the neuron is inactive, and above which 
the neuron fires repetitively. The sign of Iθ should depend on whether Vθ is above or below VL. 

ii. If Iapp is held constant in time above threshold, the neuron should fire action potentials repetitively. 
Find the relationship between frequency of firing ν and Iapp above threshold. 

iii. Show that ν behaves roughly linearly for large Iapp, and determine the slope. 

iv. Make a sketch of ν as a function of Iapp, annotating the important features. 

(b) Response as a function of synaptic input gsyn, with no applied current (Iapp = 0). Suppose that the 
synaptic conductance gsyn is constant in time. This could be approximately true in vivo when a neuron 
receives a constant barrage of inputs from many other sources, so that the summed input is approximately 
constant. 

i. Determine the threshold synaptic conductance gsyn,θ below which the neuron is inactive, and above 
which the neuron fires repetitively. 

ii. Find the relationship between frequency of firing ν and gsyn above threshold. 

iii. Show that the ν behaves roughly linearly for large gsyn, and determine the slope. 

iv. Make a sketch of ν as a function of gsyn, annotating the important features. 

5. Simulate an integrate­and­fire neuron in MATLAB with gsyn = 0, Iapp = 1 nA, Cm = 500 pF, gL = 25 nS, 
VL = −70 mV, Vθ = −54 mV, and V0 = −60 mV. To perform your numerical integration, use a step size 
of dt = 0.2 ms, and follow the instructions around Eqs. (5.46) to (5.48) in Dayan and Abbott. As soon as V 
exceeds Vθ , reset it to V0 in the next time step. Graph a train of 10 spikes, starting from the initial condition 
V = VL. Just for looks, you can draw a vertical line whenever a spike happens, to make your graph look more 
realistic (as in Figure 5.5 of Dayan and Abbott). Compare your interspike interval with the formula for ν that 
you derived above. 
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