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Brief review

• Null and alternative hypothesis
– Null: only chance effects
– Alternative: systematic + chance effects

• Assume the null is true
• Given this assumption, how likely is it that we’d 

see values at least as extreme as the ones we got?
• If it’s highly unlikely, reject the null hypothesis, 

and say the results are statistically significant.
– The results are due to a combination of chance and a 

systematic effect.



Key Concepts

• H0 and Ha are contradictory (mutually 
exclusive)

• Support for Ha can only be obtained 
indirectly -- by rejecting H0

• Rationale:
– We can never prove anything true, but we can 

prove something false
– We know the value of the parameter given H0

but not given Ha



Why bother with Ha at all?

• The alternative hypothesis describes the 
condition that is contrary to the null 
hypothesis, and this can be directional or 
non-directional

– Directional: The effect only occurs in a 
specific direction -- increases or decreases

– Non-directional: The effect may be greater or 
less than a population parameter
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A Tale of Two Tails

• Directional hypotheses are called one-tailed
– We are only interested in deviations at one tail 

of the distribution

• Non-directional hypotheses are called two-
tailed
– We are interested in any significant deviations 

from H0



The p-value for a test of Ho:   =   o against:

Ha: µ> µo is prob

Ha: µ< µo is prob

Ha: µ≠ µo is prob
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How do you decide to use a one- or 
two-tailed approach?

p

zobt

2p

• A one-tailed approach is 
more liberal -- it is more 
likely to declare a result 
significant.
– tcrit = 1.69 5%, one-tailed
– tcrit = 2.03 5%, two-tailed

• There’s no one right 
answer as to which test to 
use.  People will debate this 
point.



One Tail or Two?  The moderate 
approach:

• If there’s a strong, prior, theoretical expectation 
that the effect will be in a particular direction 
(A>B), then you may use a one-tailed approach.  
Otherwise, use a two-tailed test.

• Because only an A>B result is interesting, 
concentrate your attention on whether there is 
evidence for a difference in that direction.
– E.G. does this new educational reform improve 

students’ test scores?
– Does this drug reduce depression?



Examples of the moderate approach

• Is the age of this class different than the 
average age at MIT?

• Do you pay less for an education at a state 
university than you do at an Ivy League 
college?

• Is this class more boring than the norm for 
an MIT class?
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Cost of an Ivy Education 

Cost

Pr
ob

ab
ili

ty
 D

en
si

ty



Number of Doodles

Doodles

Pr
ob

ab
ili

ty
 D

en
si

ty



One tail or two?  The moderately 
conservative approach:

• The problem with the moderate approach is 
that you probably would actually find it 
interesting if the result went the other way, 
in many cases.
– If the new educational reform leads to worse

test scores, we’d want to know!
– If the new drug actually increases symptoms of 

depression, we’d want to know!



One tail or two? The moderately 
conservative approach: 

• Only use a one-tailed test if you not only have a 
strong hypothesis about the directionality of the 
results (A>B) but if it could also be argued that a 
result in the “wrong tail” (A<B) is meaningless, 
and might as well be due to chance.

• Put another way, only use a one-tailed test if you 
would not have been tempted, if the result went 
the “wrong” way, to switch to a two-tailed test (or 
switch the direction of your one-tailed test).

• It’s tough to meet this criterion.



The moderately conservative 
approach: a possible example

• It’s known how well students typically do on a intro 
statistics class. 

• You test a new self-paced study guide, in addition to the 
instruction the students usually get, and have reason to 
believe this will improve how well they do in class.

• You might well consider any evidence that the students do 
worse as simply due to chance.  After all, the students are 
getting the exact same instruction as they usually do – the 
study guide is extra.

• The moderately conservative approach would allow a one-
tailed test in this case.



One tail or two: The conservative 
approach

• Always use two-tailed tests.

• More on one- vs. two-tailed tests later in the 
lecture.



Outline

• Very brief review
• One-tailed vs. two-tailed tests
• Small sample testing
• Significance & multiple tests II: Data 

snooping
• What do our results mean?
• Decision theory and power



Significance testing for small 
samples

• z-test is for known standard error, or large 
sample size (N>30)

• As you might imagine, for small sample 
sizes, we can again use the t-distribution 
instead, resulting in a t-test.



Example t-test

• A researcher needs to calibrate a 
spectrophotometer used to measure carbon 
monoxide (CO) concentration in the air.

• This is done by measuring the CO concentration in 
a special manufactured gas sample (“span gas”), 
known to have a precisely controlled 
concentration of 70 ppm.

• If the machine reads close to 70 ppm, it’s ready 
for use.  If not, it needs to be adjusted.



Spectrophotometer calibration

• One day the technician makes five readings 
on the span gas: 78, 83, 68, 72, 88.

• Can these readings have occurred by 
chance, if the machine is set properly, or do 
they show bias, i.e. that the machine needs 
to be adjusted?

• H0: µ = 70 ppm
• Ha: µ ≠ 70 ppm



Calculate the test statistic
• As before (with the z-test) we calculate the test statistic, 

tobt = (observed – expected)/SE
• Under H0, expected = µ = 70 ppm
• Observed = m = 77.8 ppm
• We don’t know the SE of the mean, given H0, but we can 

estimate it by SD/sqrt(N).  But for this small sample size 
(N=5), we then need to use a t-test instead of a z-test.

• SD ≈ 8.07 ppm
– Note this is the SD estimate where we divide by 

N-1, not N



Calculate the test statistic

• m = 77.8 ppm, SE = 8.07/sqrt(5) ≈ 3.61ppm
• tobt = (77.8 – 70)/3.61 ≈ 2.2



Find the p-value

• tobt = 2.2, d.f. = 4
• From the table in the back of your book, it 

looks like we’re dealing with the 5% 
column. Degrees of 

freedom 10% 5% 1%
1 3.08 6.31 31.82
2 1.89 2.92 6.96
3 1.64 2.35 4.54
4 1.53 2.13 3.75
5 1.48 2.02 3.36



Find the p-value

• However, this 5% is the area under one tail of the 
t-distribution.

• Recall the alternative hypothesis:
– Ha: µ ≠ 70 ppm
– We are interested in whether the spectrophotometer is 

off in either direction from 70 ppm.
– This means we should be doing a 2-tailed t-test.
– Note your book does a 1-tailed test, which doesn’t 

really match Ha.
• p = 2(0.05) = 0.10
• This isn’t much evidence against the null 

hypothesis, so we might decide not to calibrate.



Report the results

• “The spectrophotometer readings (M=77.8, 
SD=8.07) were not significantly different 
from those expected from a calibrated 
machine (t(4)=2.2, p=0.10, two-tailed).”



Outline

• Very brief review
• One-tailed vs. two-tailed tests
• Small sample testing
• Significance & multiple tests II: Data 

snooping
• What do our results mean?
• Decision theory and power



Significance and multiple tests (from 
the last lecture)

• Point of testing is to distinguish between real 
differences and chance variation.

• Does statistical significance mean that the result 
cannot be explained by chance variation?
– No.  Once in a while, an event that is unlikely to occur 

due to chance can actually occur.
– We talked about this with confidence intervals –

roughly 1 in 20 times, the true mean fell outside of the 
95% confidence interval.



Significance and multiple tests

• Put another way, a researcher who runs 100 tests 
can expect to get 5 results which are “statistically 
significant” (p<0.05), and one which is “highly 
significant” (p<0.01), even if the null hypothesis is 
correct in every case.

• You cannot tell, for sure, whether a difference is 
real or just coincidence.
– This is why science requires replicable results.  If n 

independent tests all show a statistically significant 
result, the probability of this happening due to chance is 
very small.



A special case of multiple tests: data 
snooping

• Data snooping = deciding which tests to do 
once you’ve seen the data.

• Examples: 
– Disease clusters
– One-tailed vs. two-tailed tests



Data snooping: Disease clusters

• Liver cancer is rare.  The chance of having 2 or 
more cases in a given town in a year (a “cluster”) 
with 10,000 inhabitants is about 0.5%

• A cluster of liver cancer cases causes a researcher 
to search for causes, like water contamination.

• But, with a bunch of small towns of this size, 
looked at over a 10-year time period, it’s likely 
you’ll see a few clusters like this.  100 towns x 10 
years = 1000 cases.  0.005*1000 = 5.



Data snooping: One-tailed vs. two-
tailed significance testing

• This is where you look at your data to see whether 
your sample average is bigger or smaller than 
expected, before you choose your statistical test.

• H0: µ=50
• m = 65, so, uh, Ha: µ > 50.  So, I’ll do a one-tailed 

t-test looking at the upper tail…
• This is not allowed, and many statisticians 

recommend always using two-tailed tests, to guard 
against this temptation.



Consequences of data snooping: 
1-tailed vs. 2-tailed tests

• Suppose H0: µ = 20.
• You set α=0.05 as your criterion, and 

initially plan a 1-tailed test (Ha: µ > 20).
• Running the experiment, you find that 

m=15.  Oops, you switch to a 2-tailed test to 
see if this is significant.

• What is p?



Data snooping & the switch to a 2-
tailed test

• Reject the null hypothesis if zobt falls in the 5% 
region of the upper tail (1-tailed test)

• Or, switching to a 2-tailed test with α=0.05, if it 
falls in the 2.5% region of the lower tail.

• Thus, if zobt passes the test, you should report 
p<0.075, not p<0.05.
– Probably the researcher incorrectly reports p<0.05.

• This is like a “one-and-a-half” tailed test.



Switching to a 2-tailed test

0.050.025



Data snooping and the switch to a 1-
tailed test

• Similiarly, you might start off assuming you’ll do a 2-
tailed test, with α=0.05.
– 2.5% in each of the two tails

• But when you get the data, zobt isn’t big enough to fall in 
the 2.5% region of the upper tail, but is big enough to fall 
in the 5% region of the upper tail.

• You decide to switch to a 1-tailed test.
• Again, this amounts to a one-and-a-half tailed test.

– Reject the null hypothesis if zobt falls in the 2.5% region of the 
lower tail (2-tailed test), 

– Or, switching to a 1-tailed test, if zobt falls in the 5% region of the 
upper tail.



Correcting for one- vs. two-tailed 
tests

• If you think a researcher has run the wrong 
kind of test, it’s easy to recalculate the p-
value yourself.

• p(one-tailed) = ½ p(two-tailed)
• 1.5 p(one-tailed) = p(1.5-tailed)
• Etc.



A special case of multiple tests: data 
snooping

• If you’re going to use your data to pick your 
statistical test, you should really test your 
conclusions on an independent set of data.  

• Then it’s like you used pilot data (or other 
previous experiments) to form your 
hypothesis, and tested the hypothesis 
independently on other data.  This is 
allowed.
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What do our results mean?

• Significance
• Importance
• Size of the effect
• Does the difference prove the point?



Was the result significant?

• There is no true sharp dividing line between 
probable and improbable results.
– There’s little difference between p=0.051 and 

p=0.049, except that some journals will not 
publish results at p=0.051, and some readers 
will accept results at p=0.049 but not at 
p=0.051.



Was the result important?

• “Significant” does not mean you care about 
it.

• Some of what “important” means has to do 
with what you’re studying.



Importance and what you are 
studying

• Suppose you give children a vocabulary test consisting of 
40 words that the child must define.  2 points are given for 
a correct answer, 1 point for a partially correct answer.

• City kids, ages 6-9, are known to average 26 points on this 
test.

• Study 2500 rural kids, ages 6-9.
• Rural kids get an average of 25 points.  This difference 

from the expected 26 points is highly significant.
– We would probably really do a two-sample test here, not a one-

sample test.  But we don’t cover that until next week…



Importance and what you are 
studying

• But is the result important?
• The z-test only tells us that this one point 

difference is unlikely to have occurred by chance.
• Suppose you studied the entire population, and 

found this difference between rural and big city 
kids.  What would this difference mean?
– A one-point difference in average scores only amounts 

to partial credit on one word out of a test of 40 words.  
– If anything, the investigators have provided evidence 

that there is almost no difference between rural and big 
city kids on this test.



Was the result important?
• The p-value of a test depends upon the sample size.
• zobt = (observed – expected)/SE (same idea with tobt)
• SE has a sqrt(N) in the denominator – as N increases, SE 

decreases, and zobt (tobt) increases. 
– As N increases, the same difference between observed & expected 

becomes more significant.
• An important result can be non-significant just because 

you didn’t take a big enough sample.
• A very small, unimportant result can be significant just 

because the sample size is so big.



Picking N

• As with confidence intervals, we can estimate 
what sample size we should use, for a given 
anticipated effect size.

• For the vocabulary test example, suppose an effect 
is only important if  the rural kids’ scores are at 
least 10 points different from the city kids’ score 
of 26.

• How many rural kids should we give the 
vocabulary test to, if we want to be able to detect a 
significant difference of this size, with α=0.01?



Picking N
• For α=0.01, zcrit = 2.58
• zobt = (observed – expected)/SE
• SE = SD/sqrt(N)

– Need to approximate SD, either from previous data, or just by 
taking a guess.

– Here, we guess SD = 10
• zobt = 10/(10/sqrt(N)) = sqrt(N)
• A difference of 10 will be highly significant if sqrt(N) > 

2.58, which implies we need a sample size of at least 2.582, 
i.e. N≥7.
– Note in the example, N=2500!



Does the difference prove the point 
the study was designed to test?

• No, a test of significance does not check the 
design of the study.  (There are tons of things that 
could go wrong, here.)
– Is it a simple random sample, or is there some bias?

• Did our poll call only phone numbers in the phonebook?
– Could the result be due to something other than the 

intended systematic effect?
• Did drug study subjects figure out whether they had been given 

the true drug vs. placebo?
– Is the null hypothesis appropriate?

• Does it assume that the stimulus levels are randomly selected, 
when actually they follow a pattern the subject might notice?
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Decisions, Decisions...

• Hypothesis testing is an example of the 
application of decision theory

• We want to use the evidence from our 
sample to decide between two hypotheses

• This involves a trade-off between different 
types of errors



Decision theory and tradeoffs 
between types of errors

• Think of a household smoke detector.
• Sometimes it goes off and there’s no fire (you 

burn some toast, or take a shower).
– A false alarm.
– A Type I error.

• Easy to avoid this type of error: take out the 
batteries!

• However, this increases the chances of a Type II 
error: there’s a fire, but no alarm.



Decision theory and tradeoffs 
between types of errors

• Similarly, one could reduce the chances of a Type 
II error by making the alarm hypersensitive to 
smoke.  
– Then the alarm will by highly likely to go off in a fire.
– But you’ll increase your chances of a false alarm = 

Type I error.  (The alarm is more likely to go off 
because someone sneezed.)

• There is typically a tradeoff of this sort between 
Type I and Type II errors.



A table

No fire Fire

No alarm No error Type II

Alarm Type I No error



A table
Truth about the population

Ho true
(No fire)

Ha true
(Fire)

Accept Ho
(No alarm)

No error
(correct null 

response)

Type II
(miss)

Reject Ho
(Alarm)

Type I
(false alarm)

No error
(hit)

Decision 
based on 
sample



More on the tradeoff between Type I 
and Type II errors

• Consider the null hypothesis, H0: µ=µ0

µο

Sampling distribution of  the 
mean, m, given true mean µo.



More on the tradeoff between Type I 
and Type II errors

• And the alternative:

µο µa

Sampling distribution
of the mean, m, if there
is a real, systematic
effect.

Here’s the mean if 
there’s a systematic 
effect.  Often we don’t 
know this.



More on the tradeoff between Type I 
and Type II errors

• We set a criterion for deciding an effect
is significant, e.g. α=0.05, one-tailed.

µο µa

criterion α=0.05



More on the tradeoff between Type I 
and Type II errors

• Note that α is the probability of saying there’s a 
systematic effect, when the results are actually just 
due to chance.  A Type I error.

µο µa

criterion α=0.05



More on the tradeoff between Type I 
and Type II errors

• Whereas β is the probability of saying the results 
are due to chance, when actually there’s a 
systematic effect as shown.  A Type II error.

µο µa

criterion α

β



More on the tradeoff between Type I 
and Type II errors

• Another relevant quantity: 1-β.  This is the 
probability of correctly rejecting the null 
hypothesis (a hit).

µο µa

criterion
1−β

β



Moving the criterion around changes the 
% of false alarms (α) and “hits” (1-β)

• A natural tradeoff between Type I and Type II errors.

• This is one reason we test x≥14 instead of x=14 (binomial 
distribution).  The latter reduces false alarms, but increases 
the number of misses.

Figure by MIT OCW.

Hits = 97.5%
False Alarms = 84%

Hits = 84%
False Alarms = 50%

Hits = 50%
False Alarms = 16%



Type I and Type II errors

• Hypothesis testing as usually done is 
minimizing α, the probability of a Type I 
error (false alarm).

• This is, in part, because we don’t know 
enough to maximize 1-β (hits).

• However, 1-β is an important quantity.  It’s 
known as the power of a test.



Statistical power

• The probability that a significance test at fixed 
level α will reject the null hypothesis when the 
alternative hypothesis is true.

• In other words, power describes the ability of a 
statistical test to show that an effect exists (i.e. that 
Ho is false) when there really is an effect (i.e. 
when Ha is true).

• A test with weak power might not be able to reject 
Ho even when Ha is true.



An example

• Can a 6-month exercise program increase 
the mineral content of young women’s 
bones? A change of 1% or more would be 
considered important.  

• What is the power of this test to detect a 
change of 1% if it exists, given that we 
study a sample of 25 subjects? 
– Again, you’d probably really run this as a two-

sample test…



How to figure out the power of a 
significance test (p. 471)

• Ho: µ=0% (i.e. the exercise program has no 
effect on bone mineral content)

• Ha: µ>0% (i.e. the exercise program has a 
beneficial effect on bone mineral content).

• Set α to 5%
• Guess the standard deviation is σ=2%



First, find the criterion for rejecting 
the null hypothesis with α=0.05

• Ho: µ=0%; say n=25 and σ=2%
• Ha: µ>0%

• The z-test will reject Ho at the α =.05 level 
when: z=(m-µo)/(σ/sqrt(n))

= (m-0)/(2/5)≥1.645
• So m ≥1.645(2/5) m ≥ 0.658% is our 

criterion for deciding to reject the null.



Step 2

• Now we want to calculate the probability that Ho
will be rejected when µ has, say, the value 1%.

• We want to know the area under the normal curve 
from the criterion (m=0.658) to +∞

• What is z for m=0.658?



Step 2

• Assuming σ for the alternative is the same as for 
the null, µa=1
zcrit = (0.658-1)/(2/sqrt(25) = -0.855

• Pr(z ≥ -.855) = .80
• So, the power of this test is 80%.  This test will 

reject the null hypothesis 80% of the time, if the 
true value of the parameter µ = 1%



-2 -1 0

Distribution of x when µ=1 Power = 0.80

α = 0.05

Fail to reject H0

Reject H0Fail to reject H0

1 2 3

-2 -1 0 0.658 
Increase

0.658 
Increase

1 2 3

Distribution of x when µ=0

Reject H0

Figure by MIT OCW.



How to increase power

• Increase α
– Make the smoke alarm more sensitive.  Get 

more false alarms, but more power to detect a 
true fire.

• Increase n.
• Increase the difference between the µ in Ha

and the in µo in Ho.
• Decrease σ.
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