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Statistical Inference

We generally make 2 kinds of statistical 
inference:

1. We estimate some population parameter 
using confidence intervals and margins of 
error.

2. We evaluate data to determine whether it 
provides evidence for some claim about the 
population.  Significance testing.



Recall from our first class: 
Chance vs. systematic factors

• A systematic factor is an influence that has a 
predictable effect on (a subgroup of) our 
observations.
– E.G. a longevity gain to elderly people who remain 

active.
– E.G. a health benefit to people who take a new drug.

• A chance factor is an influence that contributes 
haphazardly (randomly) to each observation, and 
is unpredictable.
– E.G. measurement error



Observed effects can be due to:
A. Systematic effects alone (no chance variation).

– We’re interested in systematic effects, but this almost never 
happens!

B. Chance effects alone (all chance variation).  
– Often occurs.  Often boring because it suggests the effects we’re 

seeing are just random.
C. Systematic effects plus chance.  

– Often occurs.  Interesting because there’s at least some systematic 
factor.

An important part of statistics is determining whether we’ve 
got case B or C.



Tests of significance

• Invented to deal with this question of 
whether there’s a systematic effect, or just 
noise (chance).



Example (from your book)

• A senator introduces a bill to simplify the tax 
code.  He claims this bill is revenue-neutral, i.e. on 
balance, tax revenues for the government will stay 
the same.

• To evaluate his claim, the Treasury Department 
will compare, for 100,000 representative tax 
returns, the amount of tax paid under the new bill, 
vs. under the old tax law.

d = tax under new bill – tax under the old rules
(this d is going to be our random variable)



Evaluating the new tax bill
• However, first, just to get a hint of how the results might 

turn out (with less work) they run a pilot study, in which 
they just look at the difference between the old and new 
rules, d, for 100 returns randomly chosen from the 100,000 
representative returns.  Results from this sample of 100 
returns were as follows:

• m(d) = -$219 
• s(d) = $725.

– This is a pretty big standard deviation for a mean of -$219.  
– How much tax people pay is highly variable, and it’s not surprising 

that a new bill would have a big effect on some returns, and very 
little on others.



Initial impressions

• If, under the new law, the government really 
loses an average of $219 per tax return, that 
could add up to a lot of money!
– $200/return x 100 million returns = $20 billion!

• But, this was just a pilot with 100 returns.  
And there’s a very large standard deviation.
– Do we expect this result of m(d)=-$219 to 

generalize, or is it different from $0 just by 
chance?



Does the tax law have an effect on 
revenue?

• From the results of a sample of 100 differences, d 
(i.e., we’ve looked at the effect of the tax law on 
100 tax returns), what can we say about the 
underlying population?

• I.E. is the difference we observe in the sample 
(-$219) a real difference, or did it occur just due to 
chance (we happened to randomly pick 100 
returns on which the new tax law will bring in less 
revenue, on average)?



Hypotheses

• The Treasury Dept. in this story believes that the 
tax law will negatively affect revenue.  They 
believe the sample mean of -$219 represents a real 
difference.

• The senator believes that the tax law will make no 
difference, on average.  He believes that the -$219 
was due to chance.

• These two alternatives, (a real difference, vs. due 
to chance) are two opposing hypotheses. 



Hypotheses

• The terminology for these hypotheses in statistics 
is the “null hypothesis” and the “alternative 
hypothesis”.

• Null hypothesis, Ho: 
– There is no “real,” systematic effect.  The observed 

effect was due to chance.
• Alternative hypothesis, Ha: 

– There is a real effect.  In this case, the Treasury 
believes the effect is explicitly a negative one – a 
reduction in tax revenue.  (They wouldn’t be so 
annoyed with the senator if they thought his law would 
increase tax revenues…)



Hypotheses

• Null hypothesis, Ho: 
– There is no “real,” systematic effect.  

Ho: µ(d) = $0

• Alternative hypothesis, Ha: 
– There is a real effect, and it’s negative.  

Ha: µ(d) < $0

hypothesis parameter
of interest

specific value hypothesized
for this parameter; could be
anything – need not be 0.



Hypotheses

• Note that the senator and the Treasury are arguing 
over what is true for the population.  They agree 
over what happened for the 100 tax returns they 
looked at.

• Tests of significance only make sense when you 
want to know about the population.  Put another 
way, you want to know whether to expect the 
result (observed in the sample) to generalize to 
other samples.



Comment on terminology

• The alternative hypothesis is often the interesting 
one – and often the one that someone sets out to 
prove.
– E.G. The drug works – it has a real effect.

• The null hypothesis, in lay terminology, is the 
often more boring “alternative”.
– The drug doesn’t work.  Any effect you saw was due to 

chance.
• This terminology may seem a bit strange, but it’s 

standard.  Think of “null” as “there’s no real 
effect,” and “alternative” as “other than null.”



Back to the tax law problem

• This problem is much like what you’ve seen 
in earlier examples.

• Recall: 
– 100 samples of d, the difference between the 

new and old tax laws.
– m(d) = -$219, SD(d) = $725.
– How likely is it that we would see a sample 

mean of -$219 or less, if (Ho: µ(d)=$0) were 
true?



P(m(d) ≤ -$219 | µ(d) =$0) = ?

• As when we did sampling theory, we need to 
know the mean and standard error of the sampling 
distribution of the mean.
– Assuming Ho is true gives us a theory about what the 

sampling distribution of the mean looks like.
– Ho true -> µ(d) = $0.
– Ho true doesn’t tell us the standard error, σ/sqrt(N).  

However, we can approximate it by s/sqrt(N).



P(m(d) ≤ -$219 | µ(d) =$0) = ?

• N=100 is pretty large, so we can use the z-
tables for this.

• z(-$219) = (-$219 - µ(d))/SE(d)
= (-$219 - $0)($725/sqrt(100))
≈ -3

• Looking up in our z-tables, what is the 
probability that z ≤ -3?



P(z ≤ -3) = ?

~.1%~.1%

99.73%

• From the tables:

• So, the probability that we would see a mean 
difference on 100 tax returns of -$219 if the 
population mean difference were $0 is about 
1 in 1000.

z Height Area
3 0.443 99.73



What do we report in a research 
paper?

• Summarize the data, say what test is used, 
report the p-value.
– “The difference in revenue between the new tax 

proposal and the old tax law 
(M=-$219, SD=$725) was highly significant 

(z = -3, p<0.01)”

statistic its observed
value

p-value. 
Alt: p=0.0014

summary



Will the tax law negatively affect tax 
revenue?

• Well, we assumed that it would not (the null hypothesis, 
Ho).

• And, following that assumption to its logical conclusion, 
we found a “contradiction,” of sorts.  An “absurdity”.  An 
unlikely event.
– If Ho is true, it is highly unlikely that we would have observed such

a low value for m(d) = -$219.  
• Therefore we “reject” the hypothesis, Ho, and decide to 

“accept” the alternative hypothesis, Ha, that there’s a real 
systematic effect.  It’s likely that the tax law has a real 
negative impact on tax revenues.



Argument by contradiction
• You’ve probably seen proof by contradiction.
• E.G. Prove that there is no largest prime number.

– Assume the contradiction: there is a largest prime number, pM.
– Let N = p1 · p2 ··· pM + 1
– N>pM, so by our assumption, N is not prime.
– But if it’s not prime, it must be divisible by one of our M primes, 

p1 through pM (with remainder 0).
– But, N/pi always has remainder 1, by construction.
– So N must be prime.  A contradiction.
– Therefore, our original assumption must be wrong – there is 

no largest prime number – there are an infinite number!



Argument by contradiction

• Statistical tests are also based on argument by 
contradiction.
– It’s not quite a “proof,” because we’re never 100% sure 

of our decision.
– To test whether or not the alternative hypothesis is true, 

assume it is not – assume the null hypothesis is true.
– If you can show that this leads to a highly unlikely 

event, i.e. that you would observe the data you 
observed, then

– You can reject the null hypothesis, and accept the 
alternative hypothesis, that there is a real systematic 
effect.



Why argument by contradiction?

• Why test for significance in this convoluted 
way?  

• In many cases, it’s difficult to set up the 
alternative hypothesis so it can be tested 
directly.
– Often don’t know what the alternative mean is, 

for instance.



Another example: Racial Bias in 
Jury Panels?

• Panels of jurors are theoretically drawn at 
random from a list of eligible citizens

• In the South in the ‘50s and ‘60s few 
African Americans were found on jury 
panels, so some defendants challenged their 
verdicts.



Racial bias on juries: a composite of 
several cases argued in the South 

between 1960 & 1980
• On appeal, one expert statistical witness 

gave this evidence
– 1.  50% of eligible citizens in the county were 

African American
– 2.  On the 80-person panel of potential jurors, 

only four were African American

• Could this be the result of pure chance?



Chances aren’t...

• If the selection of potential jurors was, in 
fact, random, then the number of African 
American jurors on a panel would be the 
binomial random variable X with n=80 
trials and p=.5

• The chances of getting a panel with only 4 
African Americans is Pr(X≤4) = 1.4 × 10-18

• (or .0000000000000000014)



A Fair Deal?

• Since the probability is so small, this is 
strong evidence against the hypothesis of 
random selection

• To emphasize the point, the witness points 
out that this probability is less than the 
chances of getting three consecutive royal 
flushes in a poker game (3.6 × 10-18)

• The judge upholds the appeal



• Now, let’s go through this again, and talk 
more explicitly about what the steps are.



Step 1: 
Formulate Hypotheses

• H0, the null hypothesis, is usually that the 
observations are the result of pure chance
– Each selection for the jury pool is 50% likely to 

be African American
– Ho: p=0.5



Step 1: 
Formulate Hypotheses

• Ha, the alternative hypothesis, is that the 
observations are the result of a real effect 
(plus some chance variation)
– African Americans are under-represented, i.e. 

the probability of them being selected for the 
jury pool is lower than expected, given their 
representation in the population.

– Ha: p<0.5



Step 2:
The Test Statistic

• Identify a statistic that will assess the 
evidence against the null hypothesis

– In the court case, the test statistic is the 
binomial variable X with p=.50 and n=80



Step 3:
Determine p-value

• A probability statement answering the 
question “if the null hypothesis were true, 
then what is the probability of observing a 
test statistic at least as extreme as the one 
we observed?”

– Pr(X≤4 | p=.50 and n=80) = 1.4 × 10-18



Step 4:
Check significance

• Compare the p-value to a fixed significance 
level, α

• α acts as a cut-off point, below which we 
agree that an effect is statistically 
significant

• If p≤ α then we rule out H0 and decide that 
something else is going on



When to Reject H0
• In scientific work, we usually choose a fixed α of .05 or 

.01
– p<0.05 -> “statistically significant”
– p<0.01 -> “highly significant”

• This is arbitrary, to some extent varies from field to field, 
and is a holdover from the pre-computer days.  But many 
scientific journals still only publish results when p≤0.05

• Different situations require different α levels.
– What is the cost of being wrong?
– Which do you want to avoid more: saying something is significant, 

when it’s not, or saying it’s not significant when it is?  (More on 
this later.)

– Does Ha seem really unlikely?  In which case perhaps be 
conservative.



Step 5: Summarize the data, say 
what test is used, report the p-value 

• If p<α:
– “The difference between the proportion of African-

American jurors selected (0.05), and the proportion 
predicted by their presence in the population of eligible 
citizens (0.5) was highly significant (p=1.4x10-18, 
computed using the binomial formula).”

– Old style: “… was highly significant (p<0.01…)”
• Results were reported simply in terms of whether they were > 

or < the fixed value of α.  
• Nowadays, we can be more informative, report the value of p, 

and let people make their own judgments of how significant 
the results are.



Step 5: Report the results

• If p>α:
– “The significance of the difference between the 

observed proportion of African-American 
jurors (0.40) and the proportion expected by 
chance (0.50) was tested.  This difference was 
not significant (p = 0.22, ns).”



Minding your p’s and α’s

• P-value: The probability of a result at least 
as extreme as the one we have obtained 
assuming H0 is true.  The smaller the p-
value, the more surprising the result and the 
stronger the evidence against the null 
hypothesis

• Alpha (α): How much evidence against H0
do we need in order to reject it?  Lower α
means we need more evidence.



Other statistical tests

• Many tests and choices of statistic: 
– One-sample z-test/z-statistic
– t-tests/t-statistic
– χ2 test/ χ2 statistic
– F-tests/F-statistic
– and so on.  

• All tests follow the steps outlined above.  And 
their p-values can be interpreted in the same way.



Meaning of the p-value
• p = probability of seeing a value equal to the observed 

value, or more extreme than the observed value, if the null 
hypothesis is true.

• Since the null hypothesis is typically the hypothesis that 
there is no real systematic effect, and any difference is due 
to chance alone, p = probability of seeing the observed 
value, or more extreme values, due to chance alone.

• Put another way: p = probability that another investigator 
running the same experiment would get a difference at 
least as big as our observed value, if the null hypothesis 
were true.



What p does not mean

• p is not equal to the probability that the null 
hypothesis is true, given the data!  

• p is computed assuming the null hypothesis.
• p = P(x ≤ 4 | Ho) ≠ P(Ho | x ≤ 4)



Furthermore, we can’t easily determine the 
probability that the null hypothesis is true

• Could we get the probability by running the test a 
number of times?  
– (Frequency theory) 

• According to frequency theory, there is no way to 
define the probability of the null hypothesis being 
right.  The distribution is what it is – if you run the 
experiment many times, the null hypothesis is 
always right, or always false.  You can’t just run 
the test lots of times and find the probability that 
it’s right.



The null hypothesis

• So, don’t talk about the probability that the 
null hypothesis is true – we don’t know this 
probability, and p does not equal this 
probability!



The null hypothesis

• In general, we can reject or discredit the null 
hypothesis with a fair degree of confidence, if our 
p-value is sufficiently low.

• But we can’t really prove the null hypothesis.
• If we do not reject the null hypothesis, we may say 

we accept, or retain the null hypothesis, or treat 
the null hypothesis as viable. 



The null hypothesis

• Furthermore, common sense tells us that the null 
hypothesis is virtually never literally true to the 
last decimal place.
– Ho: µ = 0.00000000…
– Most sensible experimental manipulations (“does this 

drug have an effect?”) cause at least some difference.
– Retaining a null hypothesis of no mean difference is 

like saying that we’re insufficiently confident whether 
the mean difference is > 0 or < 0.



Significance and multiple tests

• The point of testing is to distinguish between real 
differences and chance variation.

• Does statistical significance mean that the result 
cannot be explained by chance variation?
– No.  Once in a while, an event that is unlikely to occur 

due to chance can actually occur.
– We talked about this with confidence intervals –

roughly 1 in 20 times, the true mean fell outside of the 
95% confidence interval.



Significance and multiple tests

• Put another way, a researcher who runs 100 tests 
can expect to get 5 results which are “statistically 
significant” (p<0.05), and one which is “highly 
significant” (p<0.01), even if the null hypothesis is 
correct in every case.

• You cannot tell, for sure, whether a difference is 
real or just coincidence.
– This is why science requires replicable results.  If n 

independent tests all show a statistically significant 
result, the probability of this happening due to chance is 
very small.



Multiple tests, looked another way

• Suppose we run a family of k experiments, specifying 
α=0.05 for each experiment. What is the probability of at 
least one error (incorrectly rejecting the null hypothesis) in 
the family of studies?

• Bonferroni inequality:
– p(one or more errors) ≤ kα
– Holds regardless of whether the results of the k experiments are

independent
• If we want to ensure that p(one or more errors in the family

of experiments) < 0.05, we should use a criterion of 
α=0.05/k for each experiment.



Multiple tests
• Be wary of studies that run lots of tests, and use a liberal 

criterion like α=0.05.
• “The Nurture Assumption” by Judith Rich Harris.

– Studies on the effect of birth order will look for effects of birth 
order on sociability, extraversion, aggressiveness, excitability, 
nervousness, neuroticism, depression, inhibition, calmness, 
masculinity, dominance, and openness.

– They found effects of birth order for families of 3 or more, where 
the lastborn was slightly less masculine.

– But that’s running something like 36 tests for differences – no 
wonder they found one significant result!  It’s likely to occur just 
by chance.



Another situation with this issue of 
correcting for multiple tests

• fMRI
• Each highlighted region is

made up of voxels.
• Researchers must determine 

whether, for each voxel, there’s
a significant difference from the 
baseline response levels.

• I’m not sure how to do this.  There are still new 
research papers on it every year – people are still 
working it out.

fMRI image removed due to copyright reasons
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