
Summary sheet from last time: 
Confidence intervals 

•	 Confidence intervals take on the usual form: parameter = 
statistic ± tcrit SE(statistic) 

parameter SE 
a se · sqrt(1/N + mx 

2/ssxx) 
b se/sqrt(ssxx) 
y’ (mean) se · sqrt(1/N + (xo – mx)2/ssxx) 
ynew se · sqrt(1/N + (xnew – mx)2/ssxx + 1) 
(individual) 

• Where tcrit is with N-2 degrees of freedom, and  
se = sqrt(Σ(yi – yi’)2/(N-2)) = sqrt((ssyy – b·ssxy)/(n-2)) 

Summary sheet from last time: 
Hypothesis testing 

• 

)/SE, and 
crit. 

• 0: ρ=0: 
– tobt = 2) 

crit 

• 0: ρ=ρo: 
– 

Of course, any of the confidence intervals on the 
previous slide can be turned into hypothesis tests 
by computing tobt = (observed – expected
comparing with t
Testing H

r·sqrt(N-2)/sqrt(1-r
– Compare with t for N-2 degrees of freedom. 

Testing H
Need to use a different test statistic for this. 

Chi-square tests and non­
parametric statistics 

9.07 
4/13/2004 

• 

• 

Statistics 

Descriptive 
– Graphs 
– Frequency distributions 
– Mean, median, & mode 
– Range, variance, & standard deviation 

Inferential 
– Confidence intervals 
– Hypothesis testing 
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Two categories of inferential 
statistics 

• 

• 

Parametric statistics 
• 

• 
distributed, or at least their means are approximately 
normal. 
– 

– 

• 

Parametric 
– What we’ve done so far 

Nonparametric 
– What we’ll talk about in this lecture 

Limited to quantitative sorts of dependent variables (as 
opposed to, e.g., categorical or ordinal variables) 
Require dependent variable “scores” are normally 

There exist some parametric statistical procedures that assume 
some other, non-normal distribution, but mostly a normal 
distribution is assumed. 
The general point: parametric statistics operate with some assumed 
form for the distribution of the data. 

Sometimes require that population variances are equal 

Parametric statistics 

• 

than 

• 

• 

0 
true. 

Nonparametric statistics 

• 
– 

non-normal distribution or unequal population 
variances 

– 

• 

– 
• nd 

Best to design a study that allows you to use 
parametric procedures when possible, because 
parametric statistics are more powerful 
nonparametric. 
Parametric procedures are robust – they will 
tolerate some violation of their assumptions. 
But if the data severely violate these assumptions, 
this may lead to an increase in a Type I error, i.e. 
you are more likely to reject H when it is in fact 

Use them when: 
The dependent variable is quantitative, but has a very 

The dependent variable is categorical 
• Male or female  

Democrat, Republican, or independent 

Or the dependent variable is ordinal 
Child A is most aggressive, child B is 2 most aggressive 

2




Nonparametric statistics 

• 

– 

– 

– H0, Ha, sampling distributions, Type I & Type II errors, 

Chi-square goodness-of-fit test 

• 
– 

• χ2 

• 

The design and logic of nonparametric statistics 
are very similar to those for parametric statistics: 

Would we expect to see these results by chance, if our 
model of the population is correct (one-sample tests)? 
Do differences in samples accurately represent 
differences in populations (two-sample tests)? 

alpha levels, critical values, maximizing power -- all 
this stuff still applies in nonparametric statistics. 

A common nonparametric statistical test 
Considered nonparametric because it operates on 
categorical data, and because it can be used to compare 
two distributions regardless of the distributions 

Also written 

As an introduction, first consider a parametric 
statistical test which should be quite familiar to 
you by now… 

Coin flip example (yet again) 

• 
• 

• 
solve, we considered the dependent variable 
to be the number of heads 

Coin flip example 

• 
• 
• 

seen 60 or more heads in 100 flips, if the 
coin were fair? 

You flip a coin 100 times, and get 60 heads. 
You can think of the output as categorical 
(heads vs. tails) 
However, to make this a problem we could 

Null hypothesis: the coin is a fair coin 
Alternative hypothesis: the coin is not fair 
What is the probability that we would have 
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Coin flip example 

• 

p(61/100) + …, or by using the z-

• parametric 

Solving this problem via z-
approximation 

• zobt = (0.60-0.50)/sqrt(0.52/100) = 2 
• p  ≈ 0.046 
• α=0.05, we would 

decide that this coin was unlikely to be fair. 

We could solve this using either the 
binomial formula to compute p(60/100) + 

approximation to binomial data 
Either way, we did a test 

If our criterion were 

What if we were rolling a die, 

• 

gets the results 
shown on the right. 

• 
a fair die? 

96 
85 
164 
173 
62 
41 

Number of 
rolls 

Number on 
die 

thus far 
• 

instead of tossing a coin? 
A gambler rolls a 
die 60 times, and 

Is the gambler using 

We cannot solve this problem in a good way 
using the parametric procedures we’ve seen 

Why not use the same technique as for the 
coin flip example? 
– In the coin flip example, the process was a 

binomial process 
– However, a binomial process can have only two 

choices of outcomes on each trial: success 
(heads) and failure (tails) 

– Here was have 6 possible outcomes per trial 
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• 

• 
distribution 

• 

• χ2 

alternative, approximate method 

Determining if the die is loaded 

• 
• 
• 

frequency if the die were fair 

The multinomial distribution 

Can solve problems like the fair die exactly 
using the multinomial distribution 
This is an extension of the binomial 

However, this can be a bear to calculate – 
particularly without a computer 
So statisticians developed the test as an 

Null hypothesis: the die is fair 
Alternative hypothesis: the die is loaded 
As in the coin flip example, we’d like to 
determine whether the die is loaded by 
comparing the observed frequency of each 
outcome in the sample to the expected 

outcome 
• 

look suspicious (e.g. 

• 

look suspicious, even if 

– 

6060Sum: 
10 
10 
10 
10 
10 
10 

96 
85 
164 
173 
62 
41 

ObservedNumber on 
die 

Basic idea of the χ2 test for goodness 
of fit 

• 

• 

• 
model 

• 

In 60 throws, we expect 10 of each 

Some of these lines may 

freqs 3 & 4 seem high) 
However, with 6 lines in 
the table, it’s likely at 
least one of them will 

the die is fair 
You’re essentially doing 
multiple “statistical” tests 
“by eye” 

Expected 
frequency frequency 

For each line of the table, there is a difference 
between the observed and expected frequencies 
We will combine these differences into one 
overall measure of the distance between the 
observed and expected values 
The bigger this combined measure, the more likely 
it is that the which gave us the expected 
frequencies is not a good fit to our data 
The model corresponds to our null hypothesis 
(that the die is fair).  If the model is not a good fit, 
we reject the null hypothesis 
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The χ2 statistic 

∑ 
= 

− 
= 

rows 

i i 

ii 

1 

2 
2 )(χ 

The χ2 statistic 

• 

• 
• χ2 

frequency expected 
frequency expected frequency observed 

When the observed frequency is far from the 
expected frequency (regardless of whether it is too 
small or two large) the corresponding term is 
large. 
When the two are close, the term is small. 
Clearly the statistic will be larger the more 
terms you add up (the more rows in your table), 
and we’ll have to take into account the number of 
rows somehow. 

Back to our example 

χ2 2

+ (6-10)2/10 
+ (17-10)2/10 
+ (16-10)2/10 
+ (8-10)2/10 
+ (9-10)2/10 

χ2 ≥6060Sum: 
10 
10 
10 
10 
10 
10 

96 
85 
164 
173 
62 
41 

ObservedNumber on 
die 

Probability that χ2 ≥ 14.2 if the die is 

• 

), one 

• χ2 

χ2 

= (4-10) /10 

= 142/10 = 14.2 
What’s the probability of 

getting 14.2 if the 
die is actually fair? 

Expected 
frequency frequency 

actually fair 
With some assumptions about the distribution of 
observed frequencies about expected frequencies 
(not too hard to come by, for the die problem
can solve this problem exactly. 
When Pearson invented the test, however 
(1900), computers didn’t exist, so he developed a 
method for approximating this probability using a 
new distribution, called the distribution. 
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The χ2 

• χ2 

according to a χ2 

• 
different χ2 distribution for each number of 
degrees of freedom 

• χ2 distribution 

The χ2 

• χ2 

factoids: 

≈

skew ↓ as d.f. ↑ 

distribution 

The statistic is approximately distributed 
distribution 

As with the t-distribution, there is a 

In this case, however, the 
changes quite radically as you change d.f. 

distribution 

Random 

– Mean = d.f. 
– Mode = d.f. – 2 
– Median  d.f. - .7 
– Skewed 

distribution, 

The χ2 test 

• Use the  χ2 tables 
at the back of 
your book, for 
the appropriate # i

area (along 
top of table) 

d.f. and α. 

use? 
• 

equation for χ2 

• 

What degrees of freedom do you 

Let k = # categories = # expected 
frequencies in the table = # terms in the 

– For the die example, k=6, for the 6 possible 
side of the die 

Then, d.f. = k – 1 – d 
– Where d is the number of population 

parameters you had to estimate from the sample 
in order to compute the expected frequencies 

n the table 

Degrees of 
freedom 99% 95% … 5% 1% 

1 .00016 .0039 3.84 6.64 
2 0.020 0.10 5.99 9.21 
3 0.12 0.35 7.82 11.34 
4 0.30 0.71 9.49 13.28 
5 0.55 1.14 11.07 15.09 
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Huh? 

• 

• 

– 
each possible outcome 

– 

example 
• 
• 

i
 (Σei = 60), which 

i
6

5 degrees of freedom 

This business about d will hopefully become more 
clear later, as we do more examples. 
For now, how did we compute the expected 
frequencies for the die? 

With 60 throws, for a fair die we expect 10 throws for 

This didn’t involve any estimation of population 
parameters from the sample 

– d = 0  

Degrees of freedom for the die 

So, d.f. = k – 1 = 6 – 1 = 5 
Why the “-1”? 
– We start off with 6 degrees of freedom (the 6 

expected frequencies, e , i=1:6), but we know 
the total number of rolls
removes one degree of freedom 

– I.E. if we know e , i=1:5, these 5 and the total 
number of rolls determine e , so there are only 

Back to the example 

• χ2 

• χ2 ≥ 14.2)? 
• χ2 

• 
• (

15.0911.071.140.555 
1%5%…95%99% 

Degrees of 
freedom 

So, is the die fair? 

• 
loaded. 

We found = 14.2 
What is p(
Looking up in the tables, for 5 d.f: 

14.2 > 11.07, but < 15.09 
p is probably a little bit bigger than 0.01 it’s 
actually about 0.014, if we had a better table)) 

We’re fairly certain (p<0.05) that the die is 
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Rule of thumb 

• χ2 distribution is only an 
approximation to the distribution of χ2 

• 

each line of the table, ei

When would this not be a good 
approximation? 

• 

(1: 0.01), (2, 0.01), (3, 0.01), (4, 0.95), (5, 0.01), (6, 0.01) 

be (1, 1, 1, 95, 1, 1) 

For this model, you’d need at least 500 throws to be 
χ2 χ2 test 

Once again, this 

values we’d expect to see 
As a rule of thumb, the approximation can 
be trusted when the expected frequency in 

, is 5 or more 

Example: suppose your null hypothesis for the die 
game was instead that you had the following 
probabilities of each outcome: 

In 100 throws of the die, your expected frequencies would 

These 1’s are too small for the approximation to be good.  

confident in using the tables for the 

χ2 test 

• 
one category 

• 
independent of all the others 

χ2 is not for repeated-

Summary of steps 

• ) 
• i 

• 
• 

outcome, ei, i=1:k 
• χ2 statistic, ∑ 

= 

− 
= 

k 

i i 

ii 
e 

eo 

1 

2 
2 )(χ 

Other assumptions for the 

Each observation belongs to one and only 

Independence: each observed frequency is 

– One thing this means: 
measures experiments in which, e.g., each 
subject gets rated on a task both when they do it 
right-handed, and when they do it left-handed. 

Collect the N observations (the data
Compute the k observed frequencies, o
Select the null hypothesis 
Based upon the null hypothesis and N, 
predict the expected frequencies for each 

Compute the 
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Summary of steps, continued 

• χ2 

degrees of freedom 
– 

• If χ2 > χ2 , then reject the null hypothesis 

An intuition worth checking 
• 

hypothesis? 
• 

• 

• Surely, all else being equal, we should be more likely to 

• χ2 

obvious. 

For a given a, find crit for k – 1 – d 

Note that the number of degrees of freedom 
depends upon the model, not upon the data 

crit
-- decide that the model is not a good fit.  
Else maintain the null hypothesis as valid. 

How does N affect whether we accept or reject the null 

Recall from the fair coin example that if we tossed the coin 
10 times and 60% of the flips were heads, we were not so 
concerned about the fairness of the coin. 
But if we tossed the coin 1000 times, and still 60% of the 
tosses were heads, then, based on the law of averages, we 
were concerned about the fairness of the coin. 

reject the null hypothesis if N is larger. 
Is this true for the test?  On the face of it, it’s not 

d.f. is a function of k, not N. 

Checking the intuition about the 
effect of N 

• 

• χ2? 
2 

1 

2 

1 

2 
2 2 

2 
)(4 

2 
)22()( χχ = 

− 
= 

− 
= ∑∑ 

== 

k 

i i 

ii
k 

i i 

ii 
new e 

eo 
e 

eo 

Effect of N on χ2 

• 
χ2 

• 

to reject the null hypothesis 
• 

effect of N 

Suppose we double N, and keep the same 
relative observed frequencies 
– i.e. if we observed 10 instances of outcome i 

with N observations, in 2N observations we 
observe 20 instances of outcome i. 

What happens to 

All else being equal, increasing N increases 

So, for a given set of relative observed 
frequencies, for larger N we are more likely 

This matches with our intuitions about the 
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What happens if we do the coin flip example 
the χ2 

• 

• χ2 2 2

• χ2 

– 

100100Sum: 
50 
50 

40Tails 
60Heads 

ObservedOutcome 

Look at this a bit more closely… 

• χ2 statistic was 4 
• zobt was 2 

obt)2 = χ2 

• 2 = (χ2)
• 

χ2 test 
• χ2 

way instead of the z-test way? 

100 coin flips, see 60 heads.  Is the coin fair? 
• Table:  

= (60-50) /50 + (40-50) /50 = 4 
Looking it up in the table under d.f.=1, it looks 
like p is just slightly < 0.05 

We conclude that it’s likely that the coin is not fair. 

Expected 
frequency frequency 

Our obtained value of the 

• (z
Also, zcrit crit for d.f. = 1 
So, we get the same answer using the z-test 
as we do using the 
This is always true when we apply the 
test to the binomial case (d.f. = 1) 

Another use of the χ2 test 

• 
distribution, and you want to know if the 

distribution, e.g. a normal distribution 

• We can use the χ2 test to check whether this 
data is well fit by a normal distribution 

A χ2 test for goodness of fit to a 
normal distribution 

• 
χ2 test: 

2768.5≤h<71.5 
4265.5≤h<68.5 
1862.5≤h<65.5 

100Sum: 
871.5≤h 

5h<62.5 

ObservedHeight 
(inches) 

Suppose you take N samples from a 

samples seem to come from a particular 

– E.G. heights of N students 

First, must bin the data into a finite number 
of categories, so we can apply the 

Expected 
frequency frequency 
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A χ2 test for goodness of fit to a 
normal distribution 

• 

height, and its standard deviation 
• h = 67.45”, 

and s = 2.92” 

A χ2 test for goodness of fit to a 
normal distribution 

• 

boundaries 

1.390.36z 

71.568.565.562.5Boundary 

Next, we find the candidate parameters of 
the normal distribution, from the mean 

It turns out that for this data, m

Given that mean and standard deviation, 
find the z-scores for the category 

– We will need to know what fraction of the 
normal curve falls within each category, so we 
can predict the expected frequencies 

-0.67 -1.70 

from -∞ to z, for each boundary 
value of z 

• / /

0.91770.64060.25140.0446Area below 
z 

1.390.36z 

71.568.565.562.5Boundary 
0.91770.64060.25140.0446Area below 

z 

1.390.36z 

71.568.565.562.5Boundary 

0.27712768.5≤h<71.5 
0.38924265.5≤h<68.5 
0.20681862.5≤h<65.5 

1100Sum: 
0.0823 

0.0446 
area 

871.5≤h 

5h<62.5 

ObservedHeight 
(inches) 

Get the area under the normal curve 

See http://davidmlane.com hyperstat z_table.html 
for a convenient way to get these values 

-0.67 -1.70 

What fraction of the area under the 
normal curve is in each category? 

-0.67 -1.70 

Fraction of the 
frequency 
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What frequency do we expect for 
each category? 

•	 Multiply the expected fraction by the total number of 
samples, 100 

•	 If you do any rounding, make sure the sum = N = 100! 

Height Observed Fraction of the Expected 
(inches) frequency area frequency 
h<62.5 5 0.0446 4 

62.5≤h<65.5 18 0.2068 21 
65.5≤h<68.5 42 0.3892 39 
68.5≤h<71.5 27 0.2771 28 

71.5≤h 8 0.0823 8 
Sum: 100 1 100 

(Don’t worry 
too much about 
one bin out of 
5 having slightly 
fewer than 5 
counts) 

χ2 test 
• 

χ2 = (5-4)2 2/21 + (42-39)2/39 + (27-28)2/28
+ (8-8)2/8 

0.9451 
• 

– ( χ2 eq’n) 
– (

µ and σ.) 
• α=0.05: χ2 

crit = 5.99 
• 

data (we maintain the null hypothesis as viable) 

Now (finally) we’re ready to do the 

Compute 
/4 + (18-21)

= ¼ + 9/21 + 9/39 + 1/28 = 
Degrees of freedom = k – 1 – d = 2 

k = 5 = # categories = # terms in 
d = 2 = number of population parameters estimated from the 
data in computed expected frequencies.  Estimated 

Find critical value for 
The normal distribution seems to be a very good fit to the 

Another example 

• 

• χ2 

which is what we’ve looked at so far) 

The lower tail of the χ2 distribution 

• 
χ2 

• 

How to combine results across independent 
experiments 
Results in the lower tail of the 
distribution (as opposed to the upper tail, 

In the previous examples, we looked in the upper 
tail of the distribution, to judge whether the 
disagreement between observed and expected 
frequencies was great enough that it was unlikely 
to have occurred by chance, if the null hypothesis 
model was correct 
We can also look in the lower tail, and judge 
whether the agreement between data and model is 
“too good to be true” 
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• 
providing a scientific explanation for 
heredity. 

• 
biology. 

• 
• Seed color is an 

plant the seed would grow into. 
• 

another that had only green seeds. 
• st generation yellow-

green hybrid: all seeds yellow 
• st generation hybrids, to get 2nd 

yellow, 25% were green 

Gregor Mendel and genetics 

In 1865, Mendel published an article 

This eventually led to a revolution in 

Gregor Mendel and genetics 
Mendel ran a series of experiments on garden peas 
Pea seeds are either yellow or green.  
indicator, even before you plant it, of the genes of the child 

Mendel bred a strain that had only yellow seeds, and 

Then he crossed the two, to get a 1

Then he crossed pairs of 1
generation hybrids: approximately 75% of seeds were 

Genetic model 

• 

– 
– 

• 
• So 

Genetic model 

• 
green and yellow seeds should (Mendel) 

• 
roughly 75% yellow, 25% green 

Mendel postulated a theory in which y (yellow) is 
dominant, and g (green) is recessive 

y/y, y/g, and g/y make yellow 
g/g makes green 

One gene is chosen at random from each parent 
First generation parents are either gy or yg.  
how many green seeds and how many yellow 
seeds do we expect from them? 

The model which describes the number of 

postulated) be one in which you randomly 
choose, with replacement, a yellow or green 
ball from a box with 3 yellow balls and one 
green ball 
In the long run, you’d expect the seeds to be 
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One of Mendel’s experiments 

• 
Mendel got. 

• 
obtained 8023 2nd-generation hybrid seeds 

• ≈ 2006 green seeds, 
and got 2001 
– Very 

Mendel, genetics, and goodness-of-
fit 

• 

• 
too good 

Pooling the results of multiple 
experiments 

• 

• 

• 

• χ2 

Pooling the results of multiple 
experiments 

• independent 

χ2 statistics to get a 
pooled χ2. 

• 
pooled d.f. 

In fact, this is very close to the results that 

For example, on one experiment, he 

He expected 8023/4 

close to what’s predicted by the model! 

Mendel’s made a great discovery in genetics, and 
his theory has survived the rigor of repeated 
testing and proven to be extremely powerful 
However, R.A. Fisher complained that Mendel’s 
fits were to have happened by chance. 
He thought (being generous) that Mendel had been 
“deceived by a gardening assistant” who knew 
what answers Mendel was expecting 

The thing is, the experimental results just 
mentioned have extremely good agreement with 
theoretical expectations 
This much agreement is unlikely, but nonetheless 
could happen by chance 
But it happened for Mendel on every one of his 
experiments but one! 
Fisher used the test to pool the results of 
Mendel’s experiments, and test the likelihood of 
getting so much agreement with the model 

When you have multiple, 
experiments, the results can be pooled by 
adding up the separate 

The degrees of freedom also add up, to get a 
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Pooling the results of multiple 

• χ2=5.8, d.f.=5 
• χ2=3.1, d.f.=2 
• 
χ2=5.8+3.1=8.9, with 5+2=7 d.f. 

Fisher’s results 

• χ2 

value under 42, with 84 degrees of freedom 
• 

under the χ2 curve with 84 degrees of
freedom, it is only about 4/100,000 

• 
value of χ2, i.e. such good agreement with
the data, is only 0.00004 

Fisher’s results 

• 

• 

were fudged 

distribution 
• 

• χ2 

χ2 χ2>0.9451) 

– 

• 

experiments: mini-example 
Exp. 1 gives 
Exp. 2 gives 
The two experiments pooled together give 

For Mendel’s data, Fisher got a pooled 

If one looks up the area to the left of 42 

The probability of getting such a small 

Fisher took Mendel’s genetic model for 
granted – that wasn’t what he was testing 
Based on his results, Fisher rejected his null 
hypothesis – that Mendel’s data were 
gathered honestly – in favor of his 
alternative hypothesis – that Mendel’s data 

A lower tail example – testing 
whether our data fits a normal 

Recall our earlier example in which we wanted to 
know if our height data fit a normal distribution 
We got a value of 0.9451, with 2 degrees of 
freedom, and concluded from looking in the area 
of the upper tail of the distribution (
that we could not reject the null hypothesis 

The data seemed to be well fit by a normal distribution 

Could the fit have been “too good to be true”? 
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distribution 
• 

χ2 

α χ2 
0.05 = 

0.10 
• 

• j

One-way vs. two-way χ2 

• χ2 

– 
– 
– 
– 
– 

χ2

A lower tail example – testing 
whether our data fits a normal 

To test whether the fit was too good, we look at 
the area in the lower tail of the distribution  

• With  =0.05, we get a critical value of 

0.9451 is considerably larger than this critical 
value 
We maintain the null hypothesis, and re ect the 
alternative hypothesis = the fit is too good to be 
true.  The data seem just fine. 

Our examples so far have been “one-way” tests. 
Naming of tests is like for factorial designs 
“One-way” means one factor 
E.G. factor = number on die 
E.G. factor = color of peas 
E.G. factor = into which category did our sample fall? 

• Two-way  : two factors 

Two-way χ2 

• 
• 

• 

– 
distributions are equal 

Handedness vs. gender 

• 
women in the population, and you ask them 

this: 

92113Left-handed 

11701067Total: 
8 

1070 

20Ambidextrous 

934Right-handed 

Men 

3×2 table 

Often used to test independence 
E.G: are handedness (right-handed vs. left-handed 
vs. ambidextrous) and gender (male vs. female) 
independent? 
In other words, is the distribution of handedness 
the same for men as for women? 

Test of independence = test of whether two 

Suppose you have a sample of men and 

whether they are left-handed, right-handed, 
or ambidextrous.  Get data something like 

Women 

An m×n = 
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Is the distribution of handedness the 
same for men as for women? 

• 

men (women) are right-handed, etc? 

7.9%10.6%Left-handed 

~100%100%Sum: 
0.7% 

91.5% 

1.9%Ambidextrous 

87.5%Right-handed 

Men 

Is the distribution of handedness the 
same for men as for women? 

• in the sample 

– 

• 
) 

• 

• 
distributions are the same in the population, they might 

j

It’s hard to judge from the previous table, 
because there are more men than women.  
Convert to percentages, i.e. what percent of 

Women 
(numbers in table 
don’t quite add up 
right due to 
rounding – don’t 
worry about it, we’re 
just eyeballing 
the percentages) 

From this table, it seems that the distribution 
is not the same for men as for women. 

Women are more likely to be right-handed, less likely to be left-
handed or ambidextrous 

Do women have more developed left brains (are they more 
rational?
Do women feel more social pressure to conform and be 
right-handed? 
Or is the difference just due to chance?  Even if the 

appear different ust due to chance in the sample. 

Using the χ2 test to test if the observed 
difference between the distributions is 

real or due to chance 
• 

– 

) 
– χ2 

– χ2 

the χ2 

∑ ∑  
= =  

− 
= 

m 

i 

n 

j ij 

ijij 

e 
eo 

1 1  

2 
2 )(

χ 

Computing the table of expected 
frequencies 

• 
original table: 

2237 
28 
205 

2004 
92113Left-handed 

11701067Total: 
8 

1070 

20Ambidextrous 

934Right-handed 

Men 

Basic idea: 
Construct a table of the expected frequencies for each 
combination of handedness and gender, based on the 
null hypothesis of independence (Q: how?
Compute as before 

Compare the computed with the critical value from 
table (Q: how many degrees of freedom?) 

First, take row and column totals in our 

Total Women 
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• 
≈ 89.6% 

• 

(0.896)(1067) ≈ 956 
• 

≈ 

2237 
28 
205 

2004 
92113Left-handed 

11701067Total: 
8 

1070 

20Ambidextrous 

934Right-handed 

Men 

The full table, and χ2 computation 

χ2 = (934-956)2 2

+ (113-98)2 2/107 
+ (20-13)2 2

≈ 12 

15 
107 

1048 

13 
98 
956 

Men 

92113Left-handed 
8 

1070 

20Ambidextrous 

934Right-handed 

Men 
From this table, the percentage of right-handers in 
the sample is 2004/2237 
If handedness and sex are independent, the 
number of right-handed men in the sample should 
be 89.6% of the number of men (1067) 

Similarly, the number of left-handed women 
should be 205/2237·1170 107, and so on for the 
other table entries. 

Total Women 

/956 + (1070-1048) /1048 
/98 + (92-107)

/13 + (8-15) /15 

Expected Observed 

Women Women 

Degrees of freedom 

• 

• 

– 
doesn’t count 

– 
examples or homework problems 

• 

So, are the two distributions 
different? 

χ2 

• α
• χ2 

crit 

• 

When testing independence in an m×n table, the 
degrees of freedom is (m-1)×(n-1) 
There’s again a “-d” term if you had to estimate d 
population parameters in the process of generating 
the table. 

Estimating the % of right-handers in the population 

There wont be a “-d” term in any of our two-way 

So, d.f. = (3-1)(2-1) = 2 

= 12, d.f. = 2 
Take = 0.01 

= 9.21 -> p<0.01 
We reject the null hypothesis that handedness is 
independent of gender (alt: that the distribution of 
handedness is the same for men as for women), 
and conclude that there seems to be a real 
difference in handedness for men vs. women. 
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Summary 

• χ2 

– 

χ2 

(alt: whether two distributions are the same) 
– 

• 
) 

• χ2 2 / expected] 

One-way test for goodness-of-fit 
d.f. = k – 1 – d for k categories (k rows in the one-way table) 

• Two-way  test for whether two variables are independent 

d.f. = (m-1)(n-1) – d for an m × n table 

Can test both the upper tail (is the data poorly fit by the 
expected frequencies? and the lower tail (is the data fit too 
good to be true?) 

= sum[(observed – expected)
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