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Review 

•	 Linear regression refers to fitting a best fit line 
y=a+bx to the bivariate data (x, y), where


a = my – bmx


b = cov(x, y)/sx
2 = ssxy/ssxx


•	 Correlation, r, is a measure of the strength and 
direction (positive vs. negative) of the relationship 
between x and y. 

r = cov(x, y)/(sx sy) 
(There are various other computational formulas, too.) 

Outline 

•	 Relationship between correlation and 
regression, along with notes on the 
correlation coefficient 

•	 Effect size, and the meaning of r 
•	 Other kinds of correlation coefficients 
•	 Confidence intervals on the parameters of 

correlation and regression 

Relationship between r and 
regression 

•	 r = cov(x, y)/(sx sy) 
2•	 In regression, the slope, b = cov(x, y)/sx 

•	 So we could also write b = r·(sy/sx) 
•	 This means b = r when sx = sy 
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Notes on the correlation coefficient, 
r 

1. The correlation coefficient is the slope (b) of the 
regression line when both the X and Y variables 
have been converted to z-scores, i.e. when 
sx = sy = 1. 
Or more generally, when sx = sy. 

For a given sx and sy, the larger the size of the 
correlation coefficient, the steeper the slope. 

Invariance of r to linear transformations 
of x and y 

•	 A linear change in scale of either x or y will not 
change r. 

•	 E.G. converting height to meters and weight to 
kilograms will not change r.  

•	 This is just the sort of nice behavior we’d like 
from a measure of the strength of the relationship. 
–	 If you can predict height in inches from weight in lbs, 

you can just as well predict height in meters from 
weight in kilograms. 

Notes on the correlation coefficient, r 
2. The correlation coefficient is invariant 

under linear transformations of x and/or y. 
•	 (r is the average of zx zy, and zx and z arey

invariant to linear transformations of x 
and/or y) 

How do correlations (=r) and 
regression differ? 

•	 While in regression the emphasis is on predicting 
one variable from the other, in correlation the 
emphasis is on the degree to which a linear model 
may describe the relationship between two 
variables. 

•	 The regression equation depends upon which 
variable we choose as the explanatory variable, 
and which as the variable we wish to predict. 

•	 The correlation equation is symmetric with respect 
to x and y – switch them and r stays the same. 
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but regression is not 
y x x y 

)/sx 
2 )/sy 

2 

)/(sx sy) )/(sx sy) 
x↔y 

To look out for, when calculating r: 

• 

• 
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Correlation is symmetric wrt x & y, 

a = m – bm a = m – bm
b = cov(x, y b = cov(x, y
r = cov(x, y r = cov(x, y

In regression, we had to watch out for outliers and 
extreme points, because they could have an undue 
influence on the results. 
In correlation, the key thing to be careful of is not 
to artificially limit the range of your data, as this 
can lead to inaccurate estimates of the strength of 
the relationship (as well as give poor linear fits in 

Often it gives an underestimate of r, though not always 

Height inches

W
ei

gh
t

lb
s

120 

160 

200 

240 

60 

Height inches

W
ei

gh
t

lb
s

r = 0.71 r = 0.62 
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Correlation over a limited range 

•	 A limited range will often (though not always) lead to an 
underestimate of the strength of the association between 
the two variables 
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The meaning of r 

•	 We’ve already talked about r indicating 
both whether the relationship between x and 
y is positive or negative, and the strength of 
the relationship 

•	 The correlation coefficient, r, also has 
meaning as a measure of effect size 

Outline 

•	 Relationship between correlation and 
regression, along with notes on the 
correlation coefficient 

•	 Effect size, and the meaning of r 
•	 Other kinds of correlation coefficients 
•	 Confidence intervals on the parameters of 

correlation and regression 

Effect size 

•	 When we talked about effect size before, it was in 
the context of a two-sample hypothesis test for a 
difference in the mean. 

•	 If there were a significant difference, we decided 
it was likely there was a real systematic difference 
between the two samples. 

•	 Measures of effect size attempt to get at how big is 
this systematic effect, in an attempt to begin to 
answer the question “how important is it?” 
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Effect size & regression 

•	 In the case of linear regression, the 
systematic effect refers to the linear 
relationship between x and y 

•	 A measure of effect size should get at how 
important (how strong) this relationship is 
– The fact that we’re talking about strength of 

relationship should be a hint that effect size will 
have something to do with r 

Predicting the value of y 

•	 If x is correlated with y, then the situation 
might look like this: 

X 

The meaning of r and effect size 

•	 When we talked about two-sample tests, one 
particularly useful measure of effect size was the 
proportion of the variance in y accounted for by 
knowing x 

•	 (You might want to review this, to see the 
similarity to the development on the following 
slides) 

•	 The reasoning went something like this, where 
here it’s been adapted to the case of linear 
regression: 

Predicting the value of y 

•	 Suppose I pick a random individual from 
this scatter plot, don’t tell you which, and 
ask you to estimate y for that individual. 

It would be hard to guess! 
The best you could probably 
hope for is to guess the mean 
of all the y values (at least 
your error would be 0 on 
average) 

X 
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6 

How far off would your guess be? 

X 

Predicting the value of y when you 
know x 

• Now suppose that I told you the value of x, 
and again asked you to predict y. 

• This would be somewhat easier, because 
you could use regression to predict a good 
guess for y, given x. 

Predicting the value of y when you 
know x 

• Your best guess is y’,  
the predicted value of y 
given x.  

• (Recall that regression 
attempts to fit the best 
fit line through the 
average y for each x. 
So the best guess is 
still a mean, but it’s the 
mean y given x.) X 

How far off would your guess be, 
now? 

• The variance about the mean score for that 
value of x, gives a measure of your 
uncertainty. 

• Under the assumption of homoscedasticity, 
that measure of uncertainty is sy’ 

2, where sy’ 
is the rms error = sqrt(Σ(yi – yi’)2/N) 

• y 
2, 

sy 

The variance about the mean y score, s
gives a measure of your uncertainty about 
the y scores. 



The strength of the relationship 
between x and y 

•	 is reflected in the extent to which knowing x 
reduces your uncertainty about y. 

2•	 Reduction in uncertainty = sy
2 – sy’ 

•	 Relative reduction in uncertainty: 
2(sy

2 – sy’
2)/ sy 

•	 This is the proportion of variance in y accounted 
for by x. 
(total variation – variation left over)/(total variation) 

= (variation accounted for)/(total variation) 

Unpacking the equation for the 
proportion of variance accounted for, 

2(sy
2 – sy’

2)/ sy 
First, unpack sy’

2: 

1	 N ' s2 
y ' = ∑ ( yi − yi )

2


N i=1


where y′ = a + bxi = (my − bmx ) + bxi


= my + ⎜
⎛ , cov( y x ) ⎟

⎟
⎞ 
(xi − mx )⎜ 2sx⎝ ⎠ 

Unpacking the equation for the 
proportion of variance accounted for, 

2(sy
2 – sy’

2)/ sy 

1 N
 ' ∑ (( yi − my ) −
⎛
⎜ , cov(
s 2 

y ' = ∑ ( yi − yi )
2 = 

1 N	 y x ) ⎟⎞
⎟(x − mx ))

2 
2 iN i=1 N i=1 ⎝

⎜ sx ⎠ 
2 

1 N 
⎜ y x ) ⎞ 1 N 

= ∑ ( yi − my )
2 +

⎛ , cov( ⎟ ∑ (xi − mx )
2 

⎜N i=1 ⎝ sx 
2 ⎟

⎠ N i=1 

y x ) ⎞ N 
− 2⎜

⎛ , cov( ⎟∑ (xi − mx )( yi − my )⎜ 2 ⎟
⎝ sx ⎠i=1 

y x )2 
− 2 , cov( y x )2 

= s2 
y + 

, cov( y x )2 
= s 2 

y − 
, cov(


2 2 2
sxsx	 sx 

Unpacking the equation for the 
proportion of variance accounted for, 

2(sy
2 – sy’

2)/ sy 

22 2 2 ⎛ 2 2 y x )2 ⎞
⎟ sy(sy − sy ' ) / sy = ⎜ sy − sy + 

, cov( 
⎜ 2 ⎟sx⎝	 ⎠ 

, cov( y x )2 
= r 2 !!= 2	 2sx sy 
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r2 

•	 The squared correlation coefficient (r2) is the 
proportion of variance in y that can be accounted 
for by knowing x. 

•	 Conversely, since r is symmetric with respect to x 
and y, r2 it is the proportion of variance in x that 
can be accounted for by knowing y. 

• r2 is a measure of the size of the effect described 
by the linear relationship 

Weight as a Function of Height
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The linear relationship accounts for 23% of the variation in the data. 
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Again, accounting for 23% of the variability in the data. 

Behavior and meaning of the 
correlation coefficient 

•	 Before, we talked about r as if it were a 
measure of the spread about the regression 
line, but this isn’t quite true. 
– If you keep the spread about the regression line 

the same, but increase the slope of the line, r2 

increases 
– The correlation coefficient for zero slope will 

be 0 regardless of the amount of scatter about 
the line 
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correlation coefficient 
Best way to think of the 
correlation coefficient: r
of variance in Y accounted for 
by the regression of Y on X. 

As you increase the slope of the 
regression line, the total variance 
to be explained goes up. 
Therefore the unexplained 
variance (the spread about the 
regression line) goes down 
relative to the total variance. 
Therefore, r increases.. 

 = 0.75 

 = 0.9231 

correlation coefficient 
Best way to think of the 
correlation coefficient: r
% of variance in Y 
accounted for by the 
regression of Y on X. 

If the slope of the regression 
line is 0, then 0% of the 
variability in the data is 
accounted for by the linear 

Other correlation coefficients rpb: The point-biserial correlation 
coefficient 

• This percent of variance accounted for is a useful 
concept. 

• This was the correlation coefficient we used when 
measuring effect size for a two-sample test. 

• We talked about it before in talking about effect 
size. 

• This is used when one of your variables takes on 
only two possible values (a dichotomous variable) 

• 

• 

One thing it lets us do is compare effect sizes 
across very different kinds of experiments. 
Different kinds of experiments -> different 
correlation coefficients 

• In the two-sample case, the two possible value 
corresponded to the two experimental groups or 
conditions you wished to compare. 
– E.G. are men significantly taller than women? 
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The “correlation”/”regression” rs: The Spearman rank-order 
associated with rpb correlation coefficient 
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9 variables when measured by ranked scores. 
8 • E.G. instead of using the actual height of a person, 
7 we might look at the rank of their height – are they 6 the tallest in the group? The 2nd tallest?  Compare 5 this with their ranking in weight. 4

3
 • Often used in behavioral research because a 
2 variable is difficult to measure quantitatively.  
1 May be used to compare observer A’s ranking 
0 No Yes (e.g. of the aggressiveness of each child) to 

Significant other? observer B’s ranking. 

Scatter plot for ranking data Three main types of correlation 
coefficients: summary 

Ranking of aggressiveness of 9 

children.  1=most aggressive • Pearson product-moment correlation coefficient


– Standard correlation coefficient, r 
9 

– Used for typical quantitative variables 
7 • Point-biserial correlation coefficient 
5 – rpb 

– Used when one variable is dichotomous 
3 

• Spearman rank-order correlation coefficient 
1 – rs


1 3 5 7 9 – Used when data is ordinal (ranked) (1st, 2nd, 3rd, …)

Observer A's rankings 
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Outline 

•	 Relationship between correlation and 
regression, along with notes on the 
correlation coefficient 

•	 Effect size, and the meaning of r 
•	 Other kinds of correlation coefficients 
•	 Confidence intervals on the parameters of 

correlation and regression 

Best fit line for the data (the sample) 

•	 With regression analysis, we have found 
line y = a + bx that best fits our data. 

•	 Our model for the data was that it was 
approximated by a linear relationship plus 
normally-distributed random error, e, i.e. 

y = a + bx + e 

Confidence intervals and hypothesis 

testing on a, b, y’, and r


Best fit line for the population 

•	 As you might imagine, we can think of our points 
(xi, yi) as samples from a population 

•	 Then our best fit line is our estimate of the true 
best fit line for the population 

•	 The regression model for the population as a 
whole:


y = α + βx +  ε

•	 Where α and β are the parameters we want to 

estimate, and ε is the random error 
– Assume that for all x, the errors, ε are independent,

normal, of equal σ, and mean µ=0 
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Confidence intervals for α and β 

•	 a and b are unbiased estimators for α and β, given 
our sample 

•	 Different samples yield different regression lines.  
•	 These lines are distributed around 

y = α+βx+ε 
•	 How are a and b distributed around α and β? If 

we know this, we can construct confidence 
intervals and do hypothesis testing. 

An estimator, se for σ(ε) 

• se = sqrt(Σ(yi – yi’)2/(N-2)) 
•	 Why n-2?  We used up two degrees of 

freedom in calculating a and b, leaving n-2 
independent pieces of information to 
estimate σ(ε) 

•	 An alternative computational formula: 
se = sqrt((ssyy – b·ssxy)/(n-2)) 

An estimator, se for σ(ε) 

•	 The first thing we need is an estimator for 
the standard deviation of the error (the 
spread) about the true regression line 

•	 A decent guess would be our rms error, 
rms = sqrt(Σ(yi – yi’)2/N) = sy’ 

•	 We will use a modification of this estimate: 

Recall some notation 
2• ssxx = Σ(xi – mx)
2ss = Σ(yi – my)yy 

ss = Σ(xi – mx)(yi – my)xy 
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Confidence intervals for α and β 
have the usual form 

• α = a ± tcrit SE(a) 
• β = b ± tcrit SE(b) 

Where we use the t-distribution with N-2 degrees of 
freedom, for the same reason as given in the last slide. 

•	 Why are a and b distributed according to a t-
distribution? 
–	 This is complicated, and is offered without proof.  Take 

it on faith (or, I suppose, try it out in MATLAB). 
•	 So, we just need to know what SE(a) and SE(b) 

are… 

SE(a) and SE(b) 
•	 But some intuition: where does this ssxx come from? 

–	 Usually we had a 1/sqrt(N) in our SE equations; now we have a 
1/sqrt(ssxx) 

– Like N,  ssxx increases as we add more data points

– ssxx also takes into account the spread of the x data


•	 Why care about the spread of the x data? 
–	 If all data points had the same x value, we’d be unjustified in 

drawing any conclusions about α or β, or in making predictions for 
any other value of x 

–	 If ssxx = 0, our confidence intervals would be infinitely wide, to 
reflect that uncertainty 

See picture on board 

SE(a) and SE(b) look rather 
unfamiliar 

•	 SE(a) = se · sqrt(1/N + mx
2/ssxx) 

•	 SE(b) = se/sqrt(ssxx) 
•	 Just take these equations on faith, too. 

So, you now know all you need to 
get confidence intervals for α and β 

•	 Just plug into the equation from 3 slides ago 
•	 What about hypothesis testing? 

– Just as before when we talked about confidence 
intervals and hypothesis testing, we can turn 
our confidence interval equation into the 
equation for hypothesis testing 

– E.g. is the population slope greater than 0? 

13 



Testing whether the slope is greater 
than 0 

• H0: β=0, Ha: β>0 
• tobt = b/SE(b) 
•	 Compare tobt to tcrit at the desired level of 

significance (for, in this case, a one-tailed 
test). Look up tcrit in your t-tables with N-2 
degrees of freedom. 

Versus confidence intervals on an 
individual’s response ynew, given xnew 

•	 Previous slide had confidence intervals for the 
predicted mean response for x=xo 

•	 You can also find confidence intervals for an 
individual’s predicted y value, ynew, given their x 
value, xnew 

•	 As you might imagine, SE(ynew) is bigger than 
SE(y’) 
–	 First there’s variability in the predicted mean (given by 

SE(y’)) 
–	 Then, on top of that, there’s the variability of y about 

the mean 
See picture on board 

What about confidence intervals for 
the mean response y’ at x=xo? 

•	 The confidence interval for y’=a+bxo is 
α+βxo = a+bxo ± tcrit SE(y’) 

•	 Where SE(y’) = 
se · sqrt(1/N +  (xo – mx)2/ssxx) 

• Note the  (xo – mx) term 
– The regression line always passes through (mx, my) 
– If you “wiggle” the regression line (because you’re 

unsure of a and b), it makes more of a difference the 
farther you are from the mean. 

See picture on board 

SE(ynew) 

•	 These variances add, so 
2SE(ynew)2 = SE(y’)2 + se 

SE(ynew) = se · sqrt(1/N + (xnew – mx)2/ssxx + 1) 
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Homework notes 

•	 Problems 5 and 9 both sound like they 
could be asking for either confidence 
intervals on y’, or on ynew. They are 
somewhat ambiguously worded 

•	 Assume that problem 5 is asking for 
confidence intervals on y’, and problem 9 is 
asking for confidence intervals on ynew 

Examples


Hypothesis testing on r 
•	 We often want to know if there is a significant correlation 

between x and y 
•	 For this, we want to test whether the population parameter, 

ρ, is significantly different from 0 
•	 It turns out that for the null hypothesis H0: ρ=0, 

r·sqrt(N-2)/sqrt(1-r2) has a t distribution, with N-2 degrees 
of freedom 

•	 So, just compare tobt = r·sqrt(N-2)/sqrt(1-r2) with tcrit from 
your t-tables. 

•	 Don’t use this test to test any other hypothesis, H0: ρ=ρ0. 
For that you need a different test statistic. 

Previous example: predicting weight 

from height 

xi yi (xi-mx) (yi-my) (xi-mx)2 (yi-my)2 (xi-mx) (yi-my) 
60 84 -8 -56 64 3136 448 
62 95 -6 -45 36 2025 270 
64 140 -4 0 16 0 0 
66 155 -2 15 4 225 -30 
68 119 0 -21 0 441 0 
70 175 2 35 4 1225 70 
72 145 4 5 16 25 20 
74 197 6 57 36 3249 342 
76 150 8 10 64 100 80 

Sum=612 1260 ssxx=240 ssyy=10426 ssxy=1200 
=68 m =140mx y

b = ssxy/ssxx = 1200/240 = 5; a = m – bmx = 140-5(68) = -200y 
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Confidence intervals on α and β 

• se = sqrt((ssyy – b·ssxy)/(n-2)) = 
sqrt((10426 – (5)(1200))/7) = 25.15 

• SE(a) =  se · sqrt(1/N + mx
2/ssxx) = 

25.15 · sqrt(1/9 + 682/240) = 110.71 
•	 SE(b) = se/sqrt(ssxx) = 25.15/sqrt(240) = 1.62 
• tcrit for 95% confidence = 2.36, so 
    α  = -200 ± (2.36) (110.71) 
β = 5 ± (2.36) (1.62) = 5 ± 3.82 
– It looks like β is significantly different from 0 

Testing the hypothesis that ρ≠0 

•	 r = cov(x, y)/(sx sy) 
= (ssxy/N)/sqrt((ssxx/N ssyy/N)) 
= 1200/sqrt((240)(10426)) = 0.76 

• tobt = r·sqrt(N-2)/sqrt(1-r2) 
= 0.76 sqrt(7)/sqrt(1-0.58) ≈ 3.10 

• tcrit = 2.36, so ρ is significantly different 
from 0 

Confidence intervals on y’ and ynew, 
for x = 76” 

•	 α+βxo = a+bxo ± tcrit SE(y’) 
• SE(y’) = se · sqrt(1/N + (xo – mx)2/ssxx) 

= (25.15) sqrt(1/9 + (76-68)2/240) 
= (25.15) (0.61) = 15.46 

• So  α+βxo = -200 + 5(76) ± (2.36) SE(y’)
= 180 ± 36.49 lbs 

• SE(ynew) 
= (25.15) sqrt(1+1/N+ (xnew – mx)2/ssxx) = 29.52 

•	 So ynew = 180 ± (2.36)(29.52) ≈ 180 ± 70 lbs 

A last note 

• The test for  β≠0 is actually the same as the test for 
ρ≠0. 

•	 This should make sense to you, since if ρ≠0, you 
would also expect the slope to be ≠0 

•	 Want an extra point added to your midterm score? 
Prove that the two tests are the same.  
– In general, not just for this example 
– Submit it with your next homework 
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