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• 
• 

regression line, y’=a+bx 
• 
• i vs. (yi – yi’), as a 

scatter plot, for diagnostic purposes 

Steps in regression analysis (so far) 

Plot a scatter plot 
Find the parameters of the best fit 

Plot the regression line on the scatter plot 
Plot the residuals, x

Residual Plots 

• i – yi’) against xi can 
reveal how well the linear equation explains 
the data 

• 
significantly non-linear, or other oddities 

• 
all 

What we like to see: no pattern 
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Plotting the residuals (y

Can suggest that the relationship is 

The best structure to see is no structure at 
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If it looks like this, you did something 
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If there’s a pattern, it was inappropriate 
to fit a line (instead of some other 

function) 
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wrong – there’s still a linear component! 
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What to do if a linear function isn’t 
appropriate 

• 

• 
model, y’ = M(x), then plotting y vs. y’ and 

• 
• 

Coming up next… 

• 
• 
• 

• 
y’, given x 

• 

Often you can transform the data so that it is 
linear, and then fit the transformed data. 
This is equivalent to fitting the data with a 

fitting that with a linear model. 
There are other tricks people use. 
This is outside of the scope of this class. 

Assumptions implicit in regression 
The regression fallacy 
Confidence intervals on the parameters of 
the regression line 
Confidence intervals on the predicted value 

Correlation 
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Assumption #1: your residual plot 
should not look like this: 
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• 
value (vs. “homoscedastic”, where it doesn’t depend on x) 

• 
• 

law. 
– 

j
– 

• 

• (
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Heteroscedastic data 
Data for which the amount of scatter depends upon the x-

Leads to residual plots like that on the previous slide 
Happens a lot in behavioral research because of Weber’s 

Ask people how much of an increment in sound volume they can 
ust distinguish from a standard volume 

How big a difference is required (and how much variability there is 
in the response) depends upon the standard volume 

Can often deal with this problem by transforming the data, 
or doing a modified, “weighted” regression 
Again, outside of the scope of this class.) 

homoscedasticity 
• 

Σ(yi – yi’)2/N) = sy’ 

• 

• 
homoscedastic

i. 
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Homoscedastic Heteroscedastic 

i’, 
i. 

i 

some an underestimate. 

Why we care about heteroscedasticity vs. 

Along with the residual plots, we often want to 
look at the rms (root-mean-square) error for the 
regression: 
rms = sqrt(

This gives us a measure of the spread around the 
regression line 
For this measure to be meaningful and useful, we 
want the data to be , i.e. we want 
the data to be spread out to the same degree for 
every value of x

he ght nchesinches
65 75 

Here, rms error is a good 
measure of the amount of 
spread of the data about y
for any value of x

Here, rms error is not such a 
good measure of the spread 
-- for some x it will be an 
overestimate of spread, for 
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Another assumption for regression 

• 

• y’ is like a standard 

then we can say things like, “approximately 
68% of all y scores will be between ±1 sy’ 

Assumptions 

• 
• 

about the regression line 

analysis 
Assume the y scores at each x form an 
approximately normal distribution 
Because the rms error, s
deviation, if the above assumptions hold, 

from the regression line” 

Homoscedastic data 
y scores approximately normally distributed 

The regression effect and the 
regression fallacy 

• 
– 

IQ’s. Children are given a pre-test prior to entering the 

– 
is about 15. The program seems to have no effect. 

– 

pts. Students who started out with a higher IQ showed 

here? 
• 

make smart kids less smart, and less bright kids more 

• This is just the regression
effect. 
– 

• regression fallacy 

intelligence). 

Your book’s example: 
A preschool program is aimed at increasing children’s 

program, and a post-test at the end of the program. 
On both tests, the mean score is about 100, and the SD 

However, closer inspection shows that students who 
started out with lower IQ’s had an average gain of 5 IQ 

a drop in IQ of 5 pts, on average. 

Is something interesting going on, 

Does the program act to equalize intelligence? Does it 

bright? 
No, nothing much is going on.  

In virtually all test-retest situations, the group that performs poorly 
on the first test will show some improvement (on average) on the 
second, and the group that performs better than average will do 
worse on the second test. 

The is assuming that this effect is due to 
something important (like the program equalizing 

As we’ll see, it’s not. 
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Simple intuition about the regression 
effect 

• 

Children 
1st >mean1st <mean 

Poor group Good group 

Prediction: 

2nd score low 2nd score high 

Simple intuition about the regression 
effect 

• 
the “poor” group got a high enough score on test 1 to be 
categorized in the “good” group. 

• 
• 

more like the group they really belong to. 
-> “poor” group scores, on average: 

better on test 2 than test 1, 
“good” group scores, on average: 

worse on test 2 than on test 1 

Divide children into two groups, based upon 
their performance on the first test 
– “Poor” group vs. “Good” group 

However, by chance, some of the children who belong in 

And vice versa. 
If there’s a real difference between the groups, on test 2 
we’d expect some of these mis-labeled children to score 

explanation 
• 

your book does, it will help first to talk 

we expect to see in our scatter plots, and 
more about some intuitions for what the 

“Football-shaped” scatter plots 

• 

(i
65 70 

The regression effect: more involved 

To explain the regression effect the way 

some more about what kind of distribution 

least squares linear regression is telling us. 

For many observational studies, the scatter plot 
will tend to be what your book calls “football-
shaped” 
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Why “football-shaped”? 

• 

bivariate (

• 

– 

plots homoscedastic? 

• 

hei ) 
60 65 

Just as weights and heights tend to have a (1­
dimensional) normal distribution, a plot of 

height, weight) data will often tend to 
have a 2-dimensional normal distribution 
The two-dimensional form of the normal “bell-
shaped” distribution is a cloud of points, most of 
them falling within an elliptical “football-shaped” 
region about the mean(height, weight). 

This is equivalent to most of the points in a normal 
distribution falling within +/- one standard deviation 
from the mean. 

Wait, are football-shaped scatter 

If it’s really football-shaped, isn’t the spread of the data in 
the y-direction slightly smaller at the ends (for small and 
large x)? 

150 

200 

100 

ght (inches
70 75 

Isn’t the spread in the data smaller 
for small and large x? 

• 

j

• 

i

Typical scatter plot for a controlled 
experiment 

x 
60 65 70 

each x 

No, this is just because, in an observational study, 
there are fewer data points in the ends of the 
football – there ust aren’t that many people who 
are really short or really tall, so we have the 
illusion that there’s less spread for those heights. 
In fact, for a controlled experiment, where an 
experimenter makes sure there are the same 
number of data points for each value of x , the 
scatter plot will tend to look more like this: 
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collected data only 
for specific values of x 

same # of data 
points for 
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• 

strips. 
• 

vertical strip. 
• 

points. 
hei ) 

60 65 

Note that the regression line is not 
the line through the axis of the 

ellipse 
• 

shown dashed, is 
what your book 
calls the “SD line” 

• 

right one sx, it 
moves up one sy 

hei ) 
60 65 

What happens in regression – an 
alternate view 

Divide the scatter plot 
into little vertical 

Take the mean in each 

Least squares 
regression attempts to 
fit a line through these 
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The axis line, 

It starts at the mean, 
and as it moves 
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Consider what our ellipse looks like, 

• = scoretest2 

• 

see spread about this line. 
– 

– 

line 

80 

80 120 

45º (SD) line 

For each score range on test 1, look at 
the mean score expected on test 2 

• 

through our football, 

• 
nd 

st 
80 

80 120 

in the preschool program situation 
If scoretest1 for 
each child, the data would 
fall exactly on a 45º line. 
However, this doesn’t 
often happen.  Instead we 

Spread is in both pre- and 
post-test scores. 
So it looks like we’ve 
centered our “football” 
about the 45º line = the SD 

100 

120 

pre-test score 
100 

To do this, we again 
look at a vertical strip 

and find the mean in 
that strip. 
This will be the mean 
score on the 2 test for 
the students whose 1
test score lies within 
the given range. 

100 

120 

pre-test score 
100 
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Predicted scores on test 2 are closer to 
the mean than corresponding scores on 

test 1 
• 

to scoretest1 = score
• 

predict 
score > scoretest1 

• 

score < scoretest1 

80 

80 120 

The regression effect 

• 

SD line) 
• 

• 

• 

Solid line corresponds 
test2 

For scoretest1 < mean 

test2 

For scoretest1 > mean 
predict 

test2 

100 

120 

pre-test score 
100 

We don’t expect scores on the second test to be 
exactly the same as the scores on the first test (the 

The scatter about the SD line leads to the familiar 
football-shaped scatter plot 
The spread around the line makes the mean second 
score come up for the bottom group, and go down 
for the top group. 
There’s nothing else to the regression effect – the 
preschool program does not equalize IQ’s. 

“Regression to the mean” 
• 

– 

– 

• 
• 

especially worse or more primitive state or condition” 
• 

Important experimental design 
lesson! 

• 

• 

this could just be the regression effect (and 

This effect was first noticed by aristocrat Galton, in his 
study of family resemblances. 

Tall fathers tended to have sons with height closer to the average 
(i.e., shorter) 
Short fathers also tended to have sons with height closer to the 
average (i.e., taller) 

Galton referred to this effect as “regression to mediocrity” 
Regression = “movement backward to a previous and 

This is where the term “regression analysis” comes from, 
although now it means something quite different 

Do NOT choose the groups for your 
experiment based upon performance above 
or below a threshold on a pre-test 
The group that did worse on the pre-test 
will likely do better after the treatment, but 

thus meaningless) 
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Example: does a school program 
improve performance for students 

with a learning disability? 
• 

– 
who is a normal “control” 

– 
– 

• 

Example: does a school program 
improve performance for students 

with a learning disability?
• 

– 
– 

and control groups 
– 

interest, control group goes through some other, control 
program 

– 
• 

Poor design: 
Pre-test determines who has a learning disability, and 

Both groups go through treatment 
Post-test 

Post-test, in this situation, will likely show a 
meaningless regression to the mean, and we wont 
be able to tell if the school program helps 

Good design: 
Pre-test determines who has a learning disability 
Split learning disability group randomly into treatment 

Treatment group goes through school program of

Post-test 
If the post-test shows an improvement for the 
treatment group, we can be more confident this 
shows an actual effect of the treatment 

Correlation 

• 
talk about confidence intervals and so on. 

• 
relationship between two variables (as 
found by regression), how strong is the 
relationship? 

Correlation 

• 
things or between mathematical or 

associated, or occur together in a way not 
expected on the basis of chance alone 

• We’ll be talking about a measure of 

We’ll come back to regression later, and 

But first, if there is a linear predictive 

– This is a question for correlation analysis 

a relation existing between phenomena or 

statistical variables which tend to vary, be 

correlation which incorporates both the sign 
of the relationship, and its strength 
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Positive correlation: weighing more 
tends to go with being taller 
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Negative correlation: sleeping less tends 

to go with drinking more coffee 
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Cups of coffee 

Zero correlation: weight does not tend to 
vary with coffee consumption Correlation 

• 

negative correlation, and zero correlation 

• 
about the best fit line than others. 

H
ei

gh
t

in
ch

es
) 

H
ou

rs
 o

f s
le

ep
 

In our scatter plots, we can see positive 
correlation between the two variables, 

(no association between the two variables) 
Some scatter plots will have more scatter 

Height and weight 
Coffee and sleep 
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Strength of association 

• 

strong. 
– 

person’s height is 65”) tells you a lot about the person’s 
weight (it’s probably about 177 lbs) 

• 

– 
you much in pinning down the other variable 

A strong positive correlation 

When the points cluster closely about the best fit 
line, the association between the two variables is 

Knowing information about one variable (e.g. a 

When the spread of points increases, the 
association weakens 

Knowing information about one variable doesn’t help 
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A strong negative correlation 

A not-so-strong negative correlation A weak positive correlation 

A not-so-strong positive correlation 
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Measuring strength of relationship 

• 

• 

variables 
≤ r ≤ 1 

• 
• 

The formula for r 

• 
not with ‘regression’ 
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x and sy) 

The Pearson Product-Moment Correlation 
Coefficient, r 
Provides a numerical measure of the 
strength of the relationship between two 

• -1  
Sign indicates direction of relationship 
Magnitude indicates strength 

Remember, r has to do with ‘correlation’ 

(Use the 1/N form 
of s

Unpacking the formula for r 

• 
product of the standard scores of the two 
variables 

• 

time, negative if on opposite sides 
• 

r = 1.00 

r is based on z-scores -- it is the average 

r will be positive if both variables tend to be 
on the same side of their means at the same 

r will be 0 if there’s no systematic 
relationship between the two variables 
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r = -.54 r = .85 

r = -.94 r = .42 
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r = -.33 r = .17 

r = .39 

Example 

• 
glasses of juice consumed per day (x), and 
doctor visits per year (y) 

• ; 
• ; 
• 
• 
• 

Looking at the correlation between # of 

x = [0 0 1 1 1 2 2 3 3 4]
y = [8 7 7 6 5 4 4 4 2 0]
zx = (x-mean(x))/std(x, 1); 
zy = (y-mean(y))/std(y, 1); 
r = mean(zx.*zy) = -0.95 
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Behavioral research 

• (
• 
• 
• 

• 

• Something’s wrong. 

Only rules of thumb:) 
Typical r within ±0.30 or ±0.50 
±0.20 typically considered weak 
Between ±0.60 and ±0.80 quite strong, 
impressive 
Greater than ±0.80 is extremely strong and 
unlikely in this sort of research 
Greater than ±1.0?  

Limitations of r 

• 

• linear 
relationship between two variables 

No correlation? 

x 

y 

r only tells you whether two variables tend 
to vary together -- nothing about the nature 
of the relationship 
– E.G:  correlation is not causation!! 

r only measures the strength of the 

– Other kinds of relationships can exist, so look 
at the data! 

r = 0 
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An alternative computational 
formula for r 

• 
x)/sx y)/sy] = cov(x, y)/(sx sy) 

• x, and 
sy, you’ll also see this version: 
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Notes on computing r 

• 
If you have to 

• 
x, and sy. 

Note we can write this as: 
r = E[(x-m · (y-m

Plugging in equations for cov(x, y), s

That last equation is intended for computing 
by hand/with a calculator.  
compute by hand, it’s probably the most 
efficient version. 
These days, in MATLAB the easiest thing 
to do is just to compute cov(x, y), s

• ; 
• ; 
• 
• 

% [var(x) cov(x,y); cov(x,y) var(y)] 
• 

Juice & doctor visits example, again 

x = [0 0 1 1 1 2 2 3 3 4]
y = [8 7 7 6 5 4 4 4 2 0]
tmpmx = cov(x, y, 1)/(std(x, 1)*(std(y, 1)) 
% Recall: cov returns the matrix 

r = tmpmx(1, 2) = -0.95 
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