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Regression and correlation

* Involve bivariate, paired data, X & Y
— Height & weight measured for the same
individual
— 1Q & exam scores for each individual
— Height of mother paired with height of daughter
» Sometimes more than two variables (W, X,
Y,Z, ...

Regression & correlation

* Concerned with the questions:

— Does a statistical relationship exist between X & Y,
which allows some predictability of one of the variables
from the other?

— How strong is the apparent relationship, in the sense of
predictive ability?
— Can a simple linear rule be used to predict one variable
from the other, and if so how good is this rule?
*« EGY=5X+6

Regression vs. correlation

* Regression:

— Predicting Y from X (or X from Y) by a linear
rule

* Correlation:
— How good is this relationship?




First tool: scatter plot

» For each pair of points, plot one member of a pair
against the corresponding other member of that
pair.

* In an experimental study, convention is to plot the

independent variable on the x-axis, the dependent
on the y-axis.

» Often we are describing the results of
observational or “correlational” studies, in which

case it doesn’t matter which variable is on which
axis.
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Scatter plot: height vs. weight
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2"d tool: find the regression line

* We attempt to predict the values of y from the
values of x, by fitting a straight line to the data

* The data probably doesn’t fit on a straight line
— Scatter

— The relationship between x & y may not quite be linear
(or it could be far from linear, in which case this
technique isn’t appropriate)

* The regression line is like a perfect version of

what the linear relationship in the data would look
like
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Regression line
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How do we find the regression line Straicht Line
that best fits the data? &
* We don’t just sketch in something that * General formula for
looks good any line is y=bx+a
* First, recall the equation for a line. .
* b is the sl f th
* Next, what do we mean by “best fit”? uﬁi SERBEREE
* Finally, based upon that definition of “best al
fit,” find the equation of the best fit line « ais the intercept (i.c., X
the value of y when
x=0)

Least-squares regression: What does

Minimizing sum of squared errors
“best fit” mean? & q

* If'y, is the true value of y paired with x,, let
y;” = our prediction of y; from x;

* We want to minimize the error in our
prediction of y over the full range of x

» We’ll do this by minimizing
sse =2(yi —¥i')
» Express the formula as y;’=a+bx;

* We want to find the values of a and b that give

us the least squared error, sse, thus this is X
called ““least-squares™ regression




For fun, we’re going to derive the
equations for the best-fit a and b
* But first, some preliminary work:

— Other forms of the variance
— And the definition of covariance

A different form of the variance

Recall:
var(x) = E(x-p,)?
=E(x* - 2xp, + p, )
=B(2) —2p2 +
= E(X2) - “xz
=2 x2/N — (T x,)?/N?
=2Zx2-(Zx)*’N)/N
You may recognize this equation from the practise
midterm (where it may have confused you).

N-1 for unbiased
estimate

The covariance

» We talked briefly about covariance a few
lectures ago, when we talked about the
variance of the difference of two random
variables, when the random variables are
not independent

* var(m, —m,) =

c,%n, + 0,%/n, — 2 cov(m,, m,)

The covariance

The covariance is a measure of how the x varies
with y (co-variance = “varies with”)
COV(Xa Y) = E[(X'Hx)(y-l"ty)]
var(x) = cov(X, X)
Using algebra like that from two slides ago, we get
an alternate form:
cov(x, y) = E[(x-p,) (y-1,)]
= E(xy —xpy - yu, + py 1)
= E(xy) — pe iy — B by T g By
= E(XY) % “y




OK, deriving the equations for
aand b

© y’=a+by
» We want the a and b that minimize
sse =Y (y;—y;)* = 2(y; —a—bx)?
* Recall from calculus that to minimize this

equation, we need to take derivatives and
set them to zero.

Derivative with respect to a

ai(Z(yi —a-bx)?) =23 (y; ~a—bx)) =0

:Zyi—aN—bei =0

¥ T4
N N

= a=

=>a=y-bx

This is the equation for a, however it’s still in terms of b.

Derivative with respect to b

;(Z(Yi —a-hx)?*) =23 (yi—a-bx)x =0
= Y XY - 27 bx)x —bX X7 =0
L v o L osy o Py g 542y =
:Nle)ﬁ NYZXI+N(XZXI 2 X)=0
L sy —xv bl y 52 2
3N2X|y| Xy b(Nle X“)

—b =covT(x, y)/sf/

Least-squares regression equations

* b=cov(x, y)/s,>
* a=m,—-bm,
(x=m, Powerpoint doesn’t make it easy to create a bar
over a letter, so we’ll go back to our old notation)
» Alternative notation:
ss = “sum of squares”
let ss,, =2(x; —m,)>
$Syy = 2(y; — my)>
Ssxy = Z(Xi - mx)(Yi - my)
then b = ss, /s,




A typical question

* Can we predict the weight of a student if we
are given their height?

» We need to create a regression equation
relating the outcome variable, weight, to the
explanatory variable, height.

« Start with the obligatory scatterplot

Example: predicting weight from height

X; Vi First, plot a scatter plot, and see if the
60 84 relationship seems even remotely linear:
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Looks ok.

Steps for computing the regression
equation

* Compute m, and m,

* Compute (x; — m,) and (y; — m,)

+ Compute (x; — m,)? and (x; — m,)(y; ~ m,)
* Compute ss,, and ss,,

* b=ss, /s,

* a=m, - bm,

Example: predicting weight from height

Xi Vi
60 84
62 95
64 140
66 155
68 119
70 175
72 145
74 197

76 150

Sum=612 1260 SS,,=240  ss,,=10426 ss,,=1200
m,=68 m,=140

b =s5,/55, = 1200240=5;  a=m, - bm, = 140-5(68) =-200




Example: predicting weight from height

Xy (xrmy)  (yimy) (x;-m,)? (Yrmy)2 (x-m,) (y;-m,)

60 84 -8 -56 64 3136 448
62 95 -6 -45 36 2025 270
64 140 -4 0 16 0 0
66 155 -2 15 4 225 -30
68 119 0 -21 0 441 0
70 175 2 35 4 1225 70
72 145 4 5 16 25 20
74 197 6 57 36 3249 342
76 150 8 10 64 100 80
Sum=612 1260 $5,,=240  ss,,=10426 ss,,=1200
m,=68 m,=140

b =s5,/s5, = 1200/240=5;  a=m, - bm, = 140-5(68) =-200

Plot the regression line
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Intercept at x=0 height (inches)
is -200. “Intercept”
at x=60 is -200+60*5
=100

Slope =5

What weight do we predict for
someone who 1s 65 tall?

» Weight =-200 + 5*height = 125 Ibs
250

200 ~ *

weigh( Ibs)

= =

o ul

o o
| Il

Ve

[

o
[e2]
o

65 70 75
height (inches)

Caveats

* Qutliers and influential observations can
distort the equation

* Be careful with extrapolations beyond the
data

 For every bivariate relationship there are
two regression lines




Effect of outliers Effect of influential observations
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person 85” tall.
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The equation may only be a good fit within the x-range of your data.




Two regression lines

* Note that the definition of “best fit” that we
used for least-squares regression was
asymmetric with respect to x and y

— It cared about error in y, but not error in x.

— Essentially, we were assuming that x was
known (no error), we were trying to estimate y,
and our y-values had some noise in them that
kept the relationship from being perfectly
linear.

Two regression lines

« But, in observational or correlational studies, the

assignment of, e.g., weight to the y-axis, and
height to the x-axis, is arbitrary.

We could just as easily have tried to predict height
from weight.

If we do this, in general we will get a different
regression line when we predict x from y than
when we predict y from x.

Swapping height and weight
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heigh{ inches)

50 100 150 200 250
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height ~0.11 - weight + 51.89
weight =5 - height - 200

Residual Plots

Plotting the residuals (y, —y;’) against x, can
reveal how well the linear equation explains
the data

Can suggest that the relationship is
significantly non-linear, or other oddities

The best structure to see is no structure at
all




What we like to see: no pattern

'S
40| o o
'S
220 .
3 ¢ o TS ¢
=
14 *
Q * *
<
% .0 . TS
¢
-40 M
60 65 70 75

height (inches)

If it looks like this, you did something
wrong — there’s still a linear component!
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If there’s a pattern, it was inappropriate
to fit a line (instead of some other

function)
40
o« * W ¢
@2 20 .
g o o ‘e
'g L ; """"""
.
™ 20| ¢ .
.
-40" *
60 65 70 75

height (inches)

What to do if a linear function isn’t
appropriate
* Often you can transform the data so that it is
linear, and then fit the transformed data.

 This is equivalent to fitting the data with a
model, y’ = M(x), then plotting y vs. y’ and
fitting that with a linear model.

* This is outside of the scope of this class.
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[f it looks like this, again the
regression procedure 1s inappropriate
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Heteroscedastic data

Data for which the amount of scatter depends upon the x-
value (vs. “homoscedastic”, where it doesn’t depend on x)
Leads to residual plots like that on the previous slide
{{appens a lot in behavioral research because of Weber’s
aw.

— As people how much of an increment in sound volume they can
just distinguish from a standard volume

— How big a difference is required (and how much variability there is
in the result) depends upon the standard volume
Can often deal with this problem by transforming the data,
or doing a modified, “weighted” regression

(Again, outside of the scope of this class.)

Coming up next...

The regression fallacy
Assumptions implicit in regression

Confidence intervals on the parameters of
the regression line

Confidence intervals on the predicted value
y’, given X
Correlation
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