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Regression and correlation 

• 

• 
Y, Z, …) 

Involve bivariate, paired data, X & Y 
– Height & weight measured for the same 

individual 
– IQ & exam scores for each individual 
– Height of mother paired with height of daughter 

Sometimes more than two variables (W, X, 

Regression & correlation 

• 
– 

– 

– 

• 

Regression vs. correlation 

• 

rule 
• 

Concerned with the questions: 
Does a statistical relationship exist between X & Y, 
which allows some predictability of one of the variables 
from the other? 
How strong is the apparent relationship, in the sense of 
predictive ability? 
Can a simple linear rule be used to predict one variable 
from the other, and if so how good is this rule? 

E.G. Y = 5X + 6 

Regression: 
– Predicting Y from X (or X from Y) by a linear 

Correlation: 
– How good is this relationship? 
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• 

pair. 
• 

• 

Scatter plot: height vs. weight 
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Regression line 

First tool: scatter plot 

For each pair of points, plot one member of a pair 
against the corresponding other member of that 

In an experimental study, convention is to plot the 
independent variable on the x-axis, the dependent 
on the y-axis. 
Often we are describing the results of 
observational or “correlational” studies, in which 
case it doesn’t matter which variable is on which 
axis. 150 160 180 210 
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2nd tool: find the regression line 

• 

• 
– 
– 

technique isn’t appropriate) 
• 
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We attempt to predict the values of y from the 
values of x, by fitting a straight line to the data 
The data probably doesn’t fit on a straight line 

Scatter 
The relationship between x & y may not quite be linear 
(or it could be far from linear, in which case this 

The regression line is like a perfect version of 
what the linear relationship in the data would look 
like 150 160 180 210 
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How do we find the regression line 
that best fits the data? 

• We don’t just sketch in something that 
looks good 

• 
• 
• 

fit,” find the equation of the best fit line 

Straight Line 

• 

• 

• 

x=0) 

x 

y 

a 

b
First, recall the equation for a line. 
Next, what do we mean by “best fit”? 
Finally, based upon that definition of “best 

General formula for 
any line is y=bx+a 

b is the slope of the 
line 

a is the intercept (i.e., 
the value of y when 

“best fit” mean? 
i i

yi i i 

• 

• 
∑(yi – yi’)2 

• i i 

• 

Minimizing sum of squared errors 

X 

Y 
yi 

yi ’ yi – yi ’ 

Least-squares regression: What does 

• If y is the true value of y paired with x , let 
’ = our prediction of y from x

We want to minimize the error in our 
prediction of y over the full range of x 
We’ll do this by minimizing 

sse = 
Express the formula as y ’=a+bx
We want to find the values of a and b that give 
us the least squared error, sse, thus this is 
called “least-squares” regression 
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For fun, we’re going to derive the 
equations for the best-fit a and b 

• 

A different form of the variance 

• 
• µx)2 

2 µx + µx 
2) 

2 µx 
2 + µx 

2 

2) – µx 
2 

= Σ xi 
2/N – (Σ xi)2/N2 

= (Σ xi 
2 – (Σ xi)2

• 

estimate 

The covariance 

• 

not independent 
(m1 – m2) = 

σ1 
2/n1 + σ2 

2/n2 – 2  cov(m1, m2) 

The covariance 

• 

• ) µx µy)] 
• 
• 

cov(x, y) µx µy)] 
µy - yµx + µx µy) 
µx µy – µx µy + µx µy 
µx µy 

But first, some preliminary work: 
– Other forms of the variance 
– And the definition of covariance 

Recall: 
var(x) = E(x-

= E(x – 2x
= E(x ) – 2
= E(x

/N) / N 
You may recognize this equation from the practise 
midterm (where it may have confused you). 

N-1 for unbiased 

We talked briefly about covariance a few 
lectures ago, when we talked about the 
variance of the difference of two random 
variables, when the random variables are 

• var

The covariance is a measure of how the x varies 
with y (co-variance = “varies with”) 
cov(x, y  = E[(x- )(y-
var(x) = cov(x, x) 
Using algebra like that from two slides ago, we get 
an alternate form: 

 = E[(x- ) (y-
= E(xy – x
= E(xy) – 
= E(xy) – 
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OK, deriving the equations for 
a and b 

• yi’ = a + bxi 

• 
sse = ∑(yi – yi’)2 = ∑(yi i)2 

• 
equation, we need to take derivatives and 
set them to zero. 

Derivative with respect to a 

0)(2))(( 2 =−−−−
∂ 
∂ 
∑ ∑ iiii bxaybxay

a 

0=−−⇒ ∑ ∑ ii xbaNy 

N 
xb

N 
ya ii ∑∑ −=⇒ 

xbya −=⇒ 

We want the a and b that minimize 
– a – bx

Recall from calculus that to minimize this 

− = 

This is the equation for a, however it’s still in terms of b. 

Derivative with respect to b 

0)(2))(( 2 =−−−−
∂ 
∂ 
∑ ∑ iiiii xbxaybxay

b 

∑ ∑∑ =−−−⇒ 0)( 2 
ii xbxyyx 

∑ ∑∑∑ =−+−⇒ 0)(11 2 
iii xxx

N 
b xy

N
yx

N 

∑ ∑ −=−⇒ )1(1 22 xx
N

byx
N i 

2/) xsyxb =⇒ 

• )/sx 
2 

y x 
(x = mx 

over a letter, so we’ll go back to our old notation) 
• 

xx = Σ(xi – mx)2 

ssyy = Σ(yi – my)2 

ssxy = Σ(xi – mx)(yi – my) 
xy / ssxx 

− = 

i i x b 

i i 

y x i i 

, cov( 

Least-squares regression equations 

b = cov(x, y
• a =  m – b m

Powerpoint doesn’t make it easy to create a bar 

Alternative notation: 
ss = “sum of squares” 
let ss

then b = ss
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A typical question

• Can we predict the weight of a student if we 
are given their height?

• We need to create a regression equation 
relating the outcome variable, weight, to the 
explanatory variable, height. 

• Start with the obligatory scatterplot

Example: predicting weight from height

60 84
62 95
64 140
66 155
68 119
70 175
72 145
74 197
76 150

First, plot a scatter plot, and see if the
relationship seems even remotely linear:
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Looks ok.

yixi

Steps for computing the regression 
equation

• Compute mx and my

• Compute (xi – mx) and (yi – my)
• Compute (xi – mx)2 and (xi – mx)(yi – my)
• Compute ssxx and ssxy

• b=ssxy/ssxx

• a=my - bmx

Example: predicting weight from height

60 84 -8 -56 64 3136 448
62 95 -6 -45 36 2025 270
64 140 -4 0 16 0 0
66 155 -2 15 4 225 -30
68 119 0 -21 0 441 0
70 175 2 35 4 1225 70
72 145 4 5 16 25 20
74 197 6 57 36 3249 342
76 150 8 10 64 100 80

(xi-mx) (yi-my)(yi-my)2(xi-mx)2(yi-my)(xi-mx)yixi

Sum=612  1260
mx=68 my=140

ssxx=240    ssyy=10426        ssxy=1200

b = ssxy/ssxx = 1200/240 = 5; a = my – bmx = 140-5(68) = -200



Example: predicting weight from height 

60 84 3136 448 
62 95 2025 270 
64 140 0 0 0 
66 155 15 4 225 
68 119 0 0 441 0 
70 175 2 4 1225 70 
72 145 4 5 16 25 20 
74 197 6 3249 342 
76 150 8 100 80 

(xi-mx) (yi-my)(yi-my)2(xi-mx)2(yi-my)(xi-mx)yixi 

Sum=612 
mx=68 my=140 

ssxx=240 ssyy=10426 ssxy=1200 

b = ssxy/ssxx = 1200/240 = 5; a = my x = 140-5(68) = -200 
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Intercept at x=0 
is -200. “Intercept” 
at x=60 is -200+60*5 
= 100 

Slope = 5 

-8 -56 64 
-6 -45 36 
-4 16 
-2 -30 

-21 
35 

57 36 
10 64 

1260 

– bm

Plot the regression line 

height inches
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What weight do we predict for 
someone who is 65” tall? 

• Weight = -200 + 5*height = 125 lbs 

50 

100 

150 

200 

250 

60 65 70 75 

( ) 

(
) 

Caveats 

• 
distort the equation 

• 
data 

• 

height inches
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Outliers and influential observations can 

Be careful with extrapolations beyond the 

For every bivariate relationship there are 
two regression lines 
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Effect of outliers
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Effect of influential observations
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Extrapolation
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Be careful when 
using the linear
regression eq’n
to estimate, e.g.,
the weight of a 
person 85” tall.

?

The equation may only be a good fit within the x-range of your data.

Two regression lines

• Note that the definition of “best fit” that we 
used for least-squares regression was 
asymmetric with respect to x and y
– It cared about error in y, but not error in x.
– Essentially, we were assuming that x was 

known (no error), we were trying to estimate y, 
and our y-values had some noise in them that 
kept the relationship from being perfectly 
linear.

X

Y
yi

yi’ yi – yi’



Two regression lines 

• 
used for least-squares regression was 
asymmetric with respect to x and y 

Two regression lines 

• 

• 

• 

Note that the definition of “best fit” that we 

– It cared about error in y, but not error in x. 
– Essentially, we were assuming that x was 

known (no error), we were trying to estimate y, 
and our y-values had some noise in them that 
kept the relationship from being perfectly 
linear. 

But, in observational or correlational studies, the 
assignment of, e.g., weight to the y-axis, and 
height to the x-axis, is arbitrary. 
We could just as easily have tried to predict height 
from weight. 
If we do this, in general we will get a different 
regression line when we predict x from y than 
when we predict y from x. 

Swapping height and weight 
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height ≈ 

y = 0.1151x + 51.886 
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0.11 · weight + 51.89 
weight = 5 · height - 200 

Residual Plots 

• i – yi’) against xi can 
reveal how well the linear equation explains 
the data 

• 
significantly non-linear, or other oddities 

• 
all 

Plotting the residuals (y

Can suggest that the relationship is 

The best structure to see is no structure at 
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What we like to see: no pattern 
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If it looks like this, you did something 
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wrong – there’s still a linear component! 
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If there’s a pattern, it was inappropriate 
to fit a line (instead of some other 

function) 
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What to do if a linear function isn’t 
appropriate 

• 

• 
model, y’ = M(x), then plotting y vs. y’ and 

• 
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65 

Often you can transform the data so that it is 
linear, and then fit the transformed data. 
This is equivalent to fitting the data with a 

fitting that with a linear model. 
This is outside of the scope of this class. 
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If it looks like this, again the 
regression procedure is inappropriate 

0 

20 

40 

hei
60 70 75 

• 
value (vs. “homoscedastic”, where it doesn’t depend on x) 

• 
• 

law. 
– 

j
– 

• 

• (
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65 

Heteroscedastic data 
Data for which the amount of scatter depends upon the x-

Leads to residual plots like that on the previous slide 
Happens a lot in behavioral research because of Weber’s 

As people how much of an increment in sound volume they can 
ust distinguish from a standard volume 

How big a difference is required (and how much variability there is 
in the result) depends upon the standard volume 

Can often deal with this problem by transforming the data, 
or doing a modified, “weighted” regression 
Again, outside of the scope of this class.) 

Coming up next… 

• 
• 
• 

• 
y’, given x 

• 

The regression fallacy 
Assumptions implicit in regression 
Confidence intervals on the parameters of 
the regression line 
Confidence intervals on the predicted value 

Correlation 
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