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Small sample tests for the difference 
between two independent means

• For two-sample tests of the difference in mean, 
things get a little confusing, here, because there 
are several cases.

• Case 1: The sample size is small, and the standard 
deviations of the populations are equal.

• Case 2: The sample size is small, and the standard 
deviations of the populations are not equal.



Inhomogeneity of variance

• Last time, we talked about Case 1, which assumed 
that the variances for sample 1 and sample 2 were 
equal.

• Sometimes, either theoretically, or from the data, 
it may be clear that this is not a good assumption.

• Note: the equal-variance t-test is actually pretty 
robust to reasonable differences in the variances, if 
the sample sizes, n1 and n2 are (nearly) equal.
– When in doubt about the variances of your two 

samples, use samples of (nearly) the same size.



Case 2: Variances not equal

• Sometimes, however, it either isn’t possible 
to have an equal number in each sample, or 
the variances are very different.

• In which case, we move on to Case 2, the t-
test for difference in means when the 
variances are not equal.



Case 2: Variances not equal

• Basically, one can deal with unequal 
variances by making a correction in the 
value for degrees of freedom.

• Equal variances: d.f. = n1 + n2 – 2
• Unequal variances: 
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Note on corrected degrees of 
freedom

• There are several equations out there for 
correcting the number of degrees of freedom.

• This equation is a bit on the conservative side – it 
will lead to an overestimate of the p-value.

• An even easier conservative correction: 
d.f. = min(n1-1, n2-1)

• You will NOT be required to memorize any of 
these equations for an exam.

• Use the one on the previous slide for your 
homework.



Case 2: Variances not equal

• Once we make this correction, we proceed 
as with a usual t-test, using the equation for 
SE from last time, for unequal variances.

• SE(difference in means) = 
sqrt(σ1

2/n1 + σ2
2/n2)

• tobt = (observed – expected)/SE
• Compare with tcrit from a t-table, for d.f. 

degrees of freedom, from the previous slide.



Example

• The math test scores of 16 students from one high 
school showed a mean of 107, with a standard 
deviation of 10.  

• 11 students from another high school had a mean 
score of 98, and a standard deviation of 15.  

• Is there a significant difference between the scores 
for the two groups, at the α=0.05 level?



Set up the null and alternative 
hypotheses, and find tcrit

• H0: µ1 – µ2 = 0
• Ha: µ1 – µ2 ≠ 0
• s1

2 = 102; s2
2 = 152; n1 = 16; n2 = 11

• d.f. = (100/16+225/11)2 / 
[(100/16)2/15 + (225/11)2/10]

≈ 16
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Determining tcrit

• d.f. = 16, α=0.05
• Two-tailed test (Ha: µ1 – µ2 ≠ 0)
• tcrit = 2.12



Compute tobt, and compare to tcrit

• m1 = 107; m2 = 98, s1 = 10; s2 = 15; n1 = 16; 
n2 = 11

• tobt = (observed – expected)/SE
• Observed difference in means = 107-98 = 9
• SE = sqrt(σ1

2/n1 + σ22/n2)
= sqrt(102/16 + 152/11) = 5.17

• tobt = 9/5.17 = 1.74
• tobt < tcrit, so the difference between the two 

schools is not significant.



Two-sample hypothesis testing for a 
difference in mean

• So, we’ve covered the following cases:
– Large sample size, independent samples
– Small sample size, independent samples, equal 

variance
– Small sample size, independent samples, 

unequal variance
• There’s essentially one more case to go: 

related samples.



But first, consider the following 
example

• An owner of a large taxi fleet wants to 
compare the gas mileage with gas A and gas 
B.

• She randomly picks 100 of her cabs, and 
randomly divides them into two groups, A 
and B, each with 50 cabs.

• Group A gets gas A, group B gets gas B



Gas mileage example

• After a day of driving, she gets the 
following results:

mean mpg std. dev.
Group A 25 5.00
Group B 26 4.00

• m1 – m2 = -1.  Is this significant?  The 
samples are large enough that we can use a 
z-test.



Gas mileage example

• H0: µ1 – µ2 = 0; Ha: µ1 – µ2 ≠ 0
• zobt = -1/SE
• SE = sqrt(s1

2/n1 + s2
2/n2) 

= sqrt(25/50 + 16/50) = 0.905
• zobt = -1.1 -> p=0.27
• No significant difference.



What could the fleet owner have 
done better?

• Though gas B seems to be slightly better 
than gas A, there was no way this difference 
was going to be significant, because the 
variance in each sample was too high.

• I.E. gas mileages varied widely from one 
cab to the next.  Why?
– Cars vary greatly in their gas mileage, and 

drivers vary greatly in how they drive.



What could the fleet owner have 
done better?

• This kind of variability (variability in cars and 
drivers) is basically irrelevant to what the fleet 
owner wants to find out.  Is there some way she 
could do the experiment so that she can essentially 
separate out this irrelevant variability from the 
variability she’s interested in (due to the change in 
gasoline)?

• Yes: use a matched-sample or repeated-measures 
experimental design.



Matched samples: Weight-loss 
example

• Suppose you want to compare weight-loss diet A 
with diet B.

• How well the two diets work may well depend 
upon factors such as:
– How overweight is the dieter to begin with?
– How much exercise do they get per week?

• You would like to make sure that the subjects in 
group A (trying diet A) are approximately the 
same according to these factors as the subjects in 
group B.



Matched-samples experimental 
design

• One way to try, as much as possible, to match 
relevant characteristics of the people in group A to 
the characteristics of the people in group B:
– Match each participant in group A as nearly as possible 

to a participant in group B who is similarly overweight, 
and gets a similar amount of exercise per week.

• This is called a “matched samples” design.
• If group A does better than group B, this cannot be 

due to differences in amt. overweight, or amt. of 
exercise, because these are the same in the two 
groups.



• What you’re essentially trying to do, here, is 
to remove a source of variability in your 
data, i.e. from some participants being more 
likely to respond to a diet than others.

• Lowering the variability will lower the 
standard error, and make the test more 
powerful.



Matched-samples design
• Another example:  You want to compare a standard tennis 

racket to a new tennis racket.  In particular, does one of 
them lead to more good serves?

• Test racket A with a number of tennis players in group A, 
racket B with group B.

• Each member of group A is matched with a member of 
group B, according to their serving ability.

• Any difference in serves between group A and group B 
cannot be due to difference in ability, because the same 
abilities are present in both samples.



Matched-samples design

• Study effects of economic well-being on marital 
happiness in men, vs. on marital happiness in 
women.

• A natural comparison is to compare the happiness 
of each husband in the study with that of his wife.

• Another common “natural” comparison is to look 
at twins.



Repeated-measures experimental 
design

• Match each participant with him/her/itself.
• Each participant is tested under all conditions.
• Test each person with tennis racket A and tennis 

racket B.  Do they serve better with A than B?
• Test each car with gasoline A and gasoline B –

does one of them lead to better mileage?
• Does each student study better while listening to 

classical music, or while listening to rock?



Related samples hypothesis testing

• In related samples designs, the matched 
samples, or repeated measures, mean that 
there is a dependence within the resulting 
pairs.

• Recall: 
A, B independent the occurrence of 

A has no effect on the probability of 
occurrence of B.



Related samples hypothesis testing

• Dependence of pairs in related samples designs:
– If subject Ai does well on diet A, it’s more likely 

subject Bi does well on diet B, because they are 
matched for factors that influence dieting success.

– If player Ai does well with racket A, this is likely in 
part due to player Ai having good tennis skill.  Since 
player Bi is matched for skill with Ai, it’s likely that if 
Ai is doing well, then Bi is also doing well.



Related samples hypothesis testing

• Dependence of pairs in related samples designs:
– If a husband reports high marital happiness, this 

increases the chances that we’ll find his wife reports 
high marital happiness.

– If a subject does well on condition A of a reaction time 
experiment, this increase the chances that he will do 
well on condition B of the experiment, since his 
performance is likely due in part to the fact that he’s 
good at reaction time experiments.



Why does dependence of the two 
samples mean we have to do a 

different test?
• For independent samples, 

var(m1 – m2) = σ1
2/n1 + σ2

2/n2

• For dependent samples,
var(m1 – m2) = 

σ1
2/n1 + σ2

2/n2 – 2 cov(m1, m2)



Why does dependence of the two samples 
mean we have to do a different test?

• “cov”?
– Covariance(x,y) = E(xy) – E(x)E(y)
– If x & y are independent, = 0.
– We’ll talk more about this later, when we discuss 

regression and correlation.
• For a typical repeated-measures or matched-

samples experiment, cov(m1, m2) > 0.
– If a tennis player does well at serving with racket A, 

they will tend to also do well with racket B.
– Negative covariance would happen if doing well with 

racket A tended to go with doing poorly with racket B.



Why does dependence of the two samples 
mean we have to do a different test?

• So, if cov(m1, m2) > 0, 
var(m1 – m2) = σ1

2/n1 + σ2
2/n2 – 2 cov(m1, m2)

< σ1
2/n1 + σ2

2/n2

• This is just the reduction in variance you 
were aiming for, in using a matched-
samples or repeated-measures design.



Why does dependence of the two samples 
mean we have to do a different test?

• If cov(m1, m2) > 0, 
var(m1 – m2) = σ1

2/n1 + σ2
2/n2 – 2 cov(m1, m2)

< σ1
2/n1 + σ2

2/n2

• The standard t-test will tend to overestimate the 
variance, and thus the SE, if the samples are 
dependent.

• The standard t-test will be too conservative, in this 
situation, i.e. it will overestimate p.



So, how do we do a related samples 
t-test?

• Let xi be the ith observation in sample 1.
Let yi be the ith observation in sample 2.

• xi and yi are a pair in the experimental design
– The scores of a matched pair of participants, or
– The scores of a particular participant, on the two 

conditions of the experiment (repeated measures)
• Create a new random variable, D, where 

Di = (xi – yi) 
• Do a standard one-sample z- or t-test on this new 

random variable.



Back to the taxi cab example

• Instead of having two different groups of cars try 
the two types of gas, a better design is to have the 
same cars (and drivers) try the two kinds of 
gasoline on two different days.
– Typically, randomize which cars try gas A on day 1, 

and which try it on day 2, in case order matters.

• The fleet owner does this experiment with only 10 
cabs (before it was 100!), and gets the following 
results:



Results of experiment
Cab Gas A Gas B Difference

1 27.01 26.95 0.06
2 20.00 20.44 -0.44
3 23.41 25.05 -1.64
… … … …
Mean 25.20 25.80 -0.60
Std. dev. 4.27 4.10 0.61

Means and std. dev’s of gas A and B about the same --
they have the same source of variability as before.



Results of experiment
Cab Gas A Gas B Difference

1 27.01 26.95 0.06
2 20.00 20.44 -0.44
3 23.41 25.05 -1.64
… … … …
Mean 25.20 25.80 -0.60
Std. dev. 4.27 4.10 0.61

But the std. dev. of the difference is very small.
Comparing the two gasolines within a single car
eliminates variability between taxis.



t-test for related samples

• H0: µD = 0; Ha: µD ≠ 0
• tobt = (mD – 0)/SE(D)

= -0.60/(0.61/sqrt(10))
= -3.11

• To look up p in a t-table, use d.f.=N-1=9
• -> p = 0.0125

Gas B gives significantly better mileage than 
gas A.

10 cabs, 10 differences



Note

• Because we switched to a repeated 
measures design, and thus reduced 
irrelevant variability in the data, we were 
able to find a significant difference with a 
sample size of only 10.

• Previously, we had found no significant 
difference with 50 cars trying each gasoline.



Summary of two-sample tests for a significant 
difference in mean

When to do this 
test

Standard error Degrees of freedom

Large sample size not applicable

Small sample, 
σ1

2=σ2
2 n1 + n2 – 2

Small sample, 
σ1

2≠σ2
2

Related samples n – 1 
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Confidence intervals

• Of course, in all of these cases you could 
also look at confidence intervals

• (µ1 – µ2) falls within (m1 – m2) ± tcrit · SE, 
with a confidence corresponding to tcrit.



Taking a step back

• What happens to the significance of a t-test, if the 
difference between the two group means gets 
larger?  (What happens to p?)

• What happens to the significance of a t-test, if the 
standard deviation of the groups gets larger?

• This is inherent to the problem of distinguishing 
whether there is a systematic effect or if the results 
are just due to chance.  It is not just due to our 
choosing a t-test. 



Is the difference in mean of these 2 
groups systematic, or just due to chance?



What about this difference in mean?



• A difference in the means of two groups 
will be significant if it is sufficiently large, 
compared to the variability within each 
group.



Put another way:

The essential idea of statistics is to compare some measure of
the variability between means of groups with some 
measure of the variability within those groups.



Yet another way:

Essentially, we are comparing the signal (the difference 
between groups that we are interested in) to the noise (the 
irrelevant variation within each group). 



Variability and effect size

• If the variability between groups (the 
“signal”) is large when compared to the 
variability within groups (the “noise”) then 
the size of the effect is large.

• A measure of effect size is useful both in:
– Helping to understand the importance of the 

result
– Meta-analysis – comparing results across 

studies



Measures of effect size

• There are a number of possible measures of effect 
size that you can use.

• Can p (from your statistical test) be a measure of 
effect size?
– No, it’s not a good measure, since p depends upon the 

sample size.
– If we want to compare across experiments, we don’t 

want experiments with larger N to appear to have larger 
effects.  This doesn’t make any sense.



Measures of effect size

• Difference in mean for the two groups, 
m1-m2
– Independent of sample size
– Nice that it’s in the same units as the variable you’re 

measuring (the dependent variable, e.g. RT, percent 
correct, gas mileage)

– However, could be large and yet we wouldn’t reject the 
null hypothesis

– We may not know a big effect when we see one
• Is a difference in RT of 100 ms large?  50 ms?



Measures of effect size

• Standardized effect size
d = (m1 – m2)/σ, where σ2 is a measure of variance within 

each of the groups, e.g. si
2 or s2

pool

• Cohen’s rule of thumb for this measure of effect 
size: 

d=0.20 low 
d=0.50 medium
d=0.80 high



Measures of effect size

• What proportion of the total variance in the 
data is accounted for by the effect?
– This concept will come up again when we talk 

about correlation analysis and ANOVA, so it’s 
worth discussing in more detail.



Recall dependent vs. independent 
variables

• An experimenter tests two groups under two 
conditions, looking for evidence of a statistical 
relation.
– E.G. test group A on tennis racket A, group B on tennis 

racket B.  Does the racket affect proportion of good 
serves?

• The manipulation under control of the 
experimenter (racket type) is the independent 
variable. “X”

• The resulting performance, not under the 
experimenter’s control, is the dependent variable
(proportion of good serves).  “Y”



Predicting the value of Y

• If X has a significant effect, then the 
situation might look like this:

X = B
X = A



Predicting the value of Y

• Suppose I pick a random individual from 
one of these two groups (you don’t know 
which), and ask you to estimate Y for that 
individual.

It would be hard to guess!  The best you could 
probably hope for is to guess the mean of all the Y 
values (at least your error would be 0 on average)



How far off would your guess be?

• The variance about the mean Y score, σY
2, 

gives a measure of your uncertainty about 
the Y scores.



Predicting the value of Y when you 
know X

• Now suppose that I told you the value of X 
(which racket a player used), and again 
asked you to predict Y (the proportion of 
good serves).

• This would be somewhat easier.



Predicting the value of Y when you 
know X

• Your best guess is again a mean, but this 
time it’s the mean Y for the given value of 
X.

X = B
X = A



How far off would your guess be, 
now?

• The variance about the mean score for that 
value of X, σY|X

2 gives a measure of your 
uncertainty.

X = B
X = A



The strength of the relationship 
between X and Y

• is reflected in the extent to which knowing X 
reduces your uncertainty about Y.

• Reduction in uncertainty = σY
2 – σY|X

2

• Relative reduction in uncertainty:
ω2 = (σY

2 – σY|X
2)/ σY

2

• This is the proportion of variance in Y accounted 
for by X.
(total variation – variation left over)/(total variation)

= (variation accounted for)/(total variation)



Back to effect size

• This proportion of the variance accounted for by 
the effect of the independent variable can also 
serve as a measure of effect size.

• Version that’s easy to calculate once you’ve done 
your statistical test (see extra reading on the MIT 
Server):

tobt value from t-test

..2

2
2

fdt
tr

obt

obt
pb

+
=

degrees of freedom from
t-test



Summary of one- and two-sample hypothesis 
testing for a difference in mean

• We’ve talked about z- and t-tests, for both 
independent and related samples

• We talked about power of a test
– And how to find it, at least for a z-test.  It’s more 

complicated for other kinds of tests.
• We talked about estimating the sample size(s) you 

need to show that an effect of a given size is 
significant.
– One can do a similar thing with finding the sample size 

such that your test has a certain power.
• We talked about measures of effect size



Steps for hypothesis testing (in 
general), revisited

Steps from before:
1. Formulate hypotheses H0 and Ha
2. Select desired significance level, α
3. Collect and summarize the data, using the test statistic 

that will assess the evidence against the null hypothesis
4. If the null hypothesis were true, what is the probability 

of observing a test statistic at least as extreme as the one 
we observed?  (Get the p-value)

5. Check the significance by comparing p with α.
6. Report the results



Steps for hypothesis testing: 
the long version

Steps:
1. Formulate hypotheses H0 and Ha
2. Select desired significance level, α
3. Specify the effect size of interest ( “an effect of 

1% would be important”, or “large”)
4. Specify the desired level of power for an effect 

of this size
5. Determine the proper size of the sample(s)
6. Collect and summarize the data, using the test 

statistic that will assess the evidence against the 
null hypothesis



Steps for hypothesis testing: 
the long version

7. If the null hypothesis were true, what is the 
probability of observing a test statistic at least as 
extreme as the one we observed?  (Get the p-
value)

8. Check the significance by comparing p with α.
9. Report the results

A. Means, std. deviations, type of test, degrees of 
freedom, value of test statistic, p-value

B. Post-hoc measure of the size of effect
C. Possibly post-hoc measure of the power of the test
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