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The gambler’s fallacy 
• 

• 0.5 
– 
– | 8 H) = P(T) = 0.5 

• 

gambler’s fallacy. 
• 

believe in probability. 
the right answer. 

gambler’s fallacy were true 
• 

They 
then switch coins, and flip. 

flipping), or 

If you get 8 heads in a row, on a fair coin, what is the 
probability that the next one will be a tail? 

Remember, coin tosses are independent 
P(T 

But, most people feel like, having tossed 8 heads, it must 
be more likely you get a tail next, to “even out” the number 
of heads.  This is the 
Basically, most human beings don’t really, in their gut, 

But we can learn to rationally get 

Some paradoxes & puzzles, if the 

Anna gets 10 heads in a row on her coin.  
Lee gets 10 tails in a row on his coin.  

– Is Anna more likely to get a head, to balance 
out all the tails on Lee’s coin (which she’s now 

– Is Anna more likely to get a tail, to balance out 
all the heads she just flipped on her own coin? 
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gambler’s fallacy were true 
• 

Would 
you carry that coin to the nearest bar, and 

would come up tails? 

gambler’s fallacy were true 
• 

which situation I have: 
– 

(p(T)>0.5) 
– 

it up. 
– 

p(T) = 0.5 

Some paradoxes & puzzles, if the 

If you manage to get 10 heads in a row on a 
coin, have you “stored up” heads?

try to bet someone a lot of money the coin 

Some paradoxes & puzzles, if the 

If I get 10 heads in a row on my coin, how do I know 

The coin was “balanced” before the 10 heads.  I expect to see some 
tails, soon, to balance out the recent heads.  
Before, the coin had a surplus of tails.  The 10 heads I saw evened 

Now the coin is balanced, and I expect p(T)=0.5. 
We still have a surplus of tails.  I should expect to see more heads, 
to balance. (p(T)<0.5) 

In some sense, the fact that you don’t know which situation you’re in 
means you should consider it equally likely that we now have a surplus 
of heads, vs. a surplus of tails.  Your best guess would be to assume 
that the coin is now balanced. 

So, even with the gambler’s fallacy, your best guess should be that 

The law of averages 

• 

– 
heads than expected. Don’t we need to toss some tails 
to get this error down to zero? 

No, the absolute error actually goes up 
with more coin tosses. An example: 
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• In the  long run, the relative frequency of an event 
approximates the probability of that event. 

So, why doesn’t this mean that if you get 10 
heads, you should expect to see some tails to 
balance them out? 

Toss 550 heads in 1000 tosses.  “Error” of 50 more 

Number of tosses 

– 
# 
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My first 10 coins were, 
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What does go down is the difference between 
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A problem 

• 

• 
concept of . 

the percentage of heads, and the expected 

Number of tosses 
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 Which would you rather: 
– I give you $50, or 
– You flip a (fair) coin, and I give you $100 if 

you get a head, $0 if you get a tail. 
To answer this (rationally), we need the 

expected value

Expected value 

• 
black, one is white. 

• If you draw a white ball, I’ll pay you $1. 
• If you draw a black ball, you pay me $0.50. 
• What is the 

you expect to win or lose? 

Expected value 

• 
pick a white ball, in which case I’ll make 
$x, and a certain probability that I’ll pick a 

There are three balls in a bag.  Two are 

Should you take the bet?
expected value, i.e. how much money do 

“Well, there’s a certain probability that I’ll 

black ball, in which case I’ll have to pay $y, 
so on average…” 
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Expected value 

• 

∑ ⋅ )(value ipi 

sum over all 
possible outcomes 

(in the long run, this 

you expect this event to 
occur) 

times the value, 

Back to our problem 

• 
black, one is white. 

• If you draw a white ball, I’ll pay you $1. 
• If you draw a black ball, you pay me $0.50. 
• 

(1/3) $1 + (2/3) (-$0.50) = $0 
• 

with this bet. 

Expected value = 

of the probability 
of that outcome 

is the fraction of times 

or cost, of that outcome 

There are three balls in a bag.  Two are 

Your expected value = E = 

In the long run, you expect to break even 

Another problem 

• 

• 

– lose money 
– 
– 

expected loss, however) 
• )=$0.15 

Back to our original problem 

• 
– 
– 

• 
• 
• 

) 

I’ll give you $0.90 each time you roll a six. You 
pay $0.30 to play (i.e. to roll the die).  Should you 
take the bet? 
Your E = (1/6) ($0.60) + (5/6) (-$0.30) 
= -$0.15 

Negative, so you expect to 
You should not take the bet. 
If you play 10 times, you expect to lose $1.50 (this is 
just the 

Note that my E = (1/6)(-$.60)+(5/6)($.30

Which would you rather: 
I give you $50. 
You flip a (fair) coin, and I give you $100 if you get a 
head, $0 if you get a tail. 

E1 = $50. 
E2 = (0.5) $100 + (0.5) $0 = $50 
The two are equivalent.  (People tend to prefer the 
certain case where I give you $50, because 
somehow that’s “certain”…
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Another example: what does it mean 
if someone gives you 3-to-1 odds? 

• 
• If it occurs, you win $3x. 
• If it does not occur, you pay $x. 
• If the bookie has correctly set the odds, 

occurs, i.e. what is the probability, p, for 
which you expect to break even? 

• 

Bayes’ Theorem 

• 
multiplication rule: 

|
• (a.k.a. 

Bayes’ Rule): 
P(F|E) = P(E|F) P(F) / P(E) 

• 

Example: deciding if you played the 
good chess program or the easier one 
• 

The 

• 
It wins 

• 

Which program did you play? 

• 

P(WW | M) 
) 

You bet $x on an outcome. 

what is the probability that the outcome 

What about for n-to-m odds? 

Recall from last time, a version of the 

P(E and F) = P(F E) P(E) = P(E|F) P(F) 
Rearranging, we get Bayes’ Theorem 

This is a powerful rule for many practical 
applications. 

There are two chess programs on the computer.  
The good one (G) beats you 75% of the time.  
mediocre (M) one wins 50% of the time.  
You randomly pick one of the programs (you 
don’t know which), and play two games. 
both times. (It wins = W, it loses = L) 
What is the probability that you played the 
mediocre program, M? 

P(M | WW) = ? 
– This is difficult to directly compute 
– But, switching it around, it’s easy to figure out 

– Bayes’ rule lets you use the easy P(WW | M to 
compute the more difficult P(M | WW) 
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Which program did you play? 

• 

• 
• 2 = (½)2 = ¼ 
• 
• 

Which program did you play? 

• 

• ) ) 
– 

• 
– 

= 0.40625 

Bayes’ rule, again: 
P(F|E) = P(E|F) P(F) / P(E) 

P(M | WW) = P(WW | M) P(M) / P(WW) 
P(WW | M) = P(W | M)
P(M) = ½ 
P(WW) is a bit tricky 

There are two ways you could have seen the 
computer program win the 2 games: 1) You could 
be playing the mediocre game, and it could win 
twice; 2) You could be playing the good game, 
and it could win twice. 
P(WW) = P(M and WW + P(G and WW

Mutually exclusive because M and G can’t both be true. 
Using the multiplication rule, 

P(WW) = P(WW | M) P(M) + P(WW | G) P(G) 
= ½ * ½ * ½ + ¾ * ¾ * ½  

Which program did you play? 
• 

• 
• 2 = (½)2 = ¼ 
• 
• 
• / 0.40625 ≈ 0.31 
• 

mediocre program has gone down a small amount, since
you lost twice in a row (which makes it more likely you
played the good program). 

false positives 
• 

• 

– 
time. 

– false positives. About 2% of 

• 

Bayes’ rule, again:
P(F|E) = P(E|F) P(F) / P(E) 

P(M | WW) = P(WW | M) P(M) / P(WW) 
P(WW | M) = P(W | M)
P(M) = ½ 
P(WW) = 0.40625 
So, P(M | WW) = ¼ * ½ 
Note that this is < 0.5.  The probability of playing the 

Bayes theorem and the problem of 

Suppose a rare disease infects 1 out of 1000 
people in the population. 
There exists a good, but imperfect, test for the 
disease. 

If you have the disease, the test is positive 99% of the 

However, there are 
uninfected patients who are tested also test positive. 

You just tested positive.  What are your chances of 
having the disease? 
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• Let 
D = patient has the disease (not D = they don’t) 
+ = patient tests positive (“–” = negative test) 

• 
= P(+ | D) P(D) / P(+) 

• 

P(D) = 0.001 

• 

= 0.02 * (1-P(D)) + 0.99 * 0.001
= 0.02 * 0.999 + 0.99 * 0.001 
= 0.02097 

• 
= 0.99 * 0.001 / 0.02097
≈ 0.0472 

• 

– 

Bayes & false positives 

Two events.  

We want to know P(D | +) 

We know: 
P(+ | D) = 0.99 

P(+ | not D) = 0.02 what is P(+)? 

Bayes & false positives 
P(+) = P(+ and not D) + P(+ and D) 
= P(+ | not D) P(not D) + P(+ | D) P(D)

So, P(D | +) = P(+ | D) P(D) / P(+)

If you test positive for the disease, you have less than a 5% 
chance of actually having the disease! 

Phew, only about 1 in 20!  Although, on the other hand, before the 
test you thought your chances were 1 in 1000… 

Some implications 
• 
• 

tests actually reduce 
recommended. 
– 
– 

– 

– 
– |

– ≈ 
P(die | ) | (

Do you have a fair coin? 

• 

• 
( ½)5 ≈ 

• 

Probably you want to have some more tests done. 
Because of this problem of false positives, ironically some 

your life span, and thus are not 

Cancer A occurs in 1 in 1000 men < 50 years old. 
Probability of having cancer A if test is positive: 1 in 20, as in the 
previous example. 
90% of patients testing positive have surgery to remove the cancer.  
(They know they may not have it, but they’re worried.) 
2% of them die due to complications, the rest are cured. 
Death rate (in 10 years) from cancer A = 25% 
P(death due to cancer A) = P(death  cancer A) P(cancer A) 
= 0.25 * 0.001 = 0.00025 

P(death due to test) 
 surgery  P(surgery  positive) P test positive) 

= 0.02 * 0.90 * 0.02 = 0.00036 > 0.00025 

You flip a coin 5 times, and see 5 heads in a row.  
Is this a fair coin? 
P(5 heads in a row | fair coin) = 

0.03 
This is pretty unlikely to happen – you might want 
to bet it’s not a fair coin. 

That’s not a bad way to make the decision, but if 
you have more information you can do better.  
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Bayes, and deciding if the coin is 
fair 

• 

• P(5 heads)? 

Bayes, and deciding if the coin is 
fair 

• 

• 
• P( ) =  

)
= ( ½ )5 (0.99) + 1 (0.01)
= 0.0409 

• 

= ( ½ )5(0.99)/0.0409 ≈ 0.76 
• 

coin, it’s pretty likely it was a fair coin… 

P(fair coin | 5 heads) = 
P(5 heads | fair coin) P(fair coin)/P(5 heads) 

What is P(fair coin)?  
– Often you don’t know. 
– But, for this example, pretend we know… 

Suppose you have a jar of 100 coins.  99 are fair, one is 
unfair.  The unfair one has two heads. 
P(fair coin) = 0.99 

5 H
P(5 H|fair)P(fair  + P(5 H|not fair)P(not fair) 

P(fair coin | 5 H) = 
P(5 H | fair coin) P(fair coin) / P(5 H) 

Thus, despite the fact that you got 5 heads on 5 flips of the 

• 
• P( ) =  

)
= ( ½ )5 (0.5) + 1 (0.5)
≈ 0.52 

• 

= ( ½ )5(0.5)/0.52 ≈ 0.03 
• 

Decisions, decisions… 

• 

• 

• 

With a different prior on P(fair coin) 

P(fair coin) = 0.5 
5 H

P(5 H|fair)P(fair  + P(6 H|not fair)P(not fair) 

P(fair coin | 5 H) = 
P(5 H | fair coin) P(fair coin) / P(5 H) 

Thus, if we don’t know how likely it is that the coin is fair, 
and thus assume the fair coin is just as likely to happen as 
not, then we get about the same result as before we used 
Bayes’: this isn’t likely to be a fair coin. 

The statistical tests we’ll talk about in this class, 
and 99.99% of tests done in BCS research, 
essentially amount to saying, “gosh, 5 heads in a 
row is pretty unlikely if you’ve got a fair coin – 
maybe it’s not fair” 
If you’ve got more information about the prior 
probabilities, you can make better decisions with 
Bayes’. 
But often we don’t, so the first method is not bad. 
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Continuous random variables 

• 

– 

• 

– 
– (

random variables? 
• P(Oi) = 0 

– 
)

• 

P(x>4.5)
P(2.0<x<6.3) 

• 1 + O2 …) = sum(P(Oi
outcomes. 

• 

So far, a lot of this probability stuff has involved 
discrete random variables 

There were a discrete, finite set of possible outcomes, 
e.g. get a tail on one coin flip, roll a double 6 

Much of what we do in statistics, however, 
involves continuous random variables, with a 
(theoretically) infinite number of possible 
outcomes. 

E.G. height of a college student, reaction time on a test 
Note that infinite does not mean unbounded.) 

What’s different, with continuous 

There are an infinite number of possible outcomes, and the sum 
(integral, really  of their probabilities must equal 1.  So each one 
has probability 0. 

As a result, we need to look at probability that the outcome 
falls in some range, instead, e.g. 

Discrete case: P(O )) for elementary 

Continuous case: P(x>4.5) an integral of the distribution 
function from x=4.5 to x=infinity 

• 

the data is distributed according to a 

distribution. 

The normal curve approximation for 
data 

• 

• 

– µ
x. 

– σ
sample standard deviation, s. 

The “normal approximation” 

A lot of times in statistics, we’ll compute 
probabilities like P(x>4.5) by assuming that 

familiar distribution, such as a normal 

– This is the “normal approximation” previously 
mentioned. 

For many types of data, the normal curve is a good 
approximation to the distribution of the data. 
Use this approximation to generalize from the 
sample to the larger population. 

• First:  
Estimate the population mean, , from the sample mean 

Estimate the population std. deviation, , from the 
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Example question you can ask 

• 
• 
• 

interested in is MIT students in general. 
• 

taller than 68.8 inches (P(h>68.8”))? 

Using what we know about normal 
distributions 

• 
height. 

σ 

(integral) under 
this part of 

68.8 

) 

For less simple examples, use a table 

• 

s.d.? 
• 

your book. (Statistical packages will have 
these tables built in.) 

Mean height for this class is 65.7 inches. 
Std. dev. = 3.1 inches 
Assume the broader population we’re 

What’s the probability that a student will be 

Well, 68.8” is one std. dev. above the mean 

What is the area 

the curve? 

Recall that 68% of a normal 
distribution lies between +/- 1 s.d. 

68%  

32%  

16%.  
p(>68.8" 
=0.16 

We know the area for a normal distribution 
for +/- 1 s.d. (68%), +/- 2 s.d. (95%), and 
+/- 3 s.d. (99.7%), but what about for 1.65 

For this, we use a table, e.g. p. A-105 of 
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Using a table 

• 
• 

• 

P(z>3). 
– 

There’s nothing new but to tell you this means we’re 
using a z-distribution. 

What the table tells you 

• 
what fraction of the 
total probability lies 

0 z-z 

) 

7.9739.690.15 

3.9939.840.05 

039.890.00 

AreaHeightz 

(ignore the “Height” 
column…) 

The table is for a z-distribution 
This is a “standardized” normal distribution, i.e. 
its mean is 0, and its standard deviation is 1. 
This means you don’t look up P(x>4.5), 
x~N(3, 0.5), you instead look up 
P(x more than 3 s.d. bigger than the mean), i.e. 

This is just like what we were doing in the last example 

For each value of z, 

between +/- z s.d.? 

area 
(percent

An example of using the table 

• 

• (

=? 

Same as our earlier 
example.  Mean height 
= 65.7”, s.d. = 3.1”, 
what is the probability 
that a student is taller 
than 68.8”? 
I.E., what is P z>1)? 

An example of using the table


•	 Want P(z>1).  Look up 
P(-1<z<1) 

•	 = 68.27.  
(Some tables will give 
you P(z>zo) directly.) 

•	 P(z>1) = 
(1-0.6827)/2 ≈ 0.16, 
as before. 

z Height Area 

… … … 

0.95 25.41 65.79 

1.00 24.20 68.27 

1.05 22.99 70.68 

… … … 

11 



Another example of using the table 

• 
s.d.(x) = 2, 
what is 

• 

• z1 
• z2 
• 

Mean(x) = 5, 

P(x>6.5 or x<3.5)? 
We need the z-scores for 6.5 and 3.5 – how many 
standard deviations are 6.5 and 3.5 from the mean, 5? 

= (6.5 – 5)/2 = 0.75 
= (3.5 – 5)/2 = -0.75 

So we want P(z>0.75 or z<-0.75), and we can get this 
from looking up P(-0.75 < z < 0.75). 

Another example of using the table


•	 P(-0.75<z<0.75) = 
0.5467 

•	 P(z<-0.75 or 
z>0.75) = 1-0.5467 
≈ 0.45 

•	 That’s our answer. 

z Height Area 

… … … 

0.70 31.23 51.61 

0.75 30.11 54.67 

0.80 28.97 57.63 

… … … 

What do I do if I need to look up 
z=0.752? 

• Round 
to the nearest z in the table. 

• 

Another example 

• 
x>4.5)? 

• -2.5 
• 
• Well, all we really 

can look up is z=2.5 and z=0.5, and figure it 

For this class, don’t worry about it.  

In your research life, the computer will look 
it up for you, interpolating if necessary. 

Mean = 4, s.d. = 1, what is p(x<1.5 or 

z(0.5) = (1.5 – 4)/1 =  
z(4.5) = (4.5 – 4)/1 = 0.5 
What do we look up?  

out from there. 
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Another example 

• 
• 

P(z<2.5) = (1-0.9876)/2 ≈ 0.006 
• 
• ≈ 0.31 
• ≈ 0.316 

random variables 
• 

in your head. 
easy 

N N

P(-2.5 < z < 2.5) = 98.76/100 
So, as in an earlier example, P(-2.5<z) = 

P(-0.5 < z < 0.5) = 38.29/100 
P(z>0.5) = (1-0.3829)/2 
So P(x<1.5 or x>4.5) 

More differences with continuous 

More complicated events are trickier to do 

– P(sum of 2 dice = 3) = P({1,2},{2,1}) 
– x~ (3, 2), y~ (4,1), P(x+y > 5) = ?? 

Normal distribution 

• 

• 
get an estimate. 

• 

Some examples 

• If x and y are both distributed according to a 

distribution of x+y? 

1 

1 

P(x) = P(y), 
x & y independent 

1 

1 

2 

P(x+y) 

Distribution of x+y, given x and y both 
normal distributions? 
You can do it empirically, in MATLAB, to 

This is a homework problem. 

uniform distribution on (0,1), what is the 

The proof is beyond the scope of this 
course, but if you know about convolution, 
P(x+y) = P(x) convolved with P(y). 
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x+y+z? 

• 

• 
0 1 2 3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Another example (again, assume 
independence) 

P(w) = P(x) = P(y) = P(z) 

0 0 5  1 1 5  0 50 100 150 200 350 400 

x 10
-3 

P(w+x) 

0 100 500 600 

-3 P(w+x+y) 

0 100 200 300 400 500 600 800 

-3 
P(w+x+y+z) 

Hmm… 

P(x+y+z), x, y, z all uniform on (0,1)?, x, y, & z 
independent. 

Hmm, this is starting to look familiar… 
0.5 1.5 2.5 

250 300 

200 300 400 

x 10

700 

x 10 

The central limit theorem 
• 

tends to look more and more like it is normally distributed 

random variables. 
• 

theorem”. 
• 

approximately normally distributed. 
• 

normally distributed. 
– 

night, …

As you add N independent random variables, their sum 

as N gets larger, regardless of the distributions of the 

This a fuzzy version of what is known as the “central limit 

What it means: data that are influenced by (i.e. the “sum” 
of) many small and unrelated random effects tend to be 

This is why so many kinds of data are approximately 

E.G. weight is a result of genetics, diet, health, what you ate last 
  And thus it tends to be approximately normally 

distributed. 
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