MITOCW | watch?v=S0o6MK_FcP4E

PROFESSOR:

The following content is provided under a Creative Commons license. Your support
will help MIT OpenCourseWare continue to offer high quality educational resources
for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

So you'll recall last time we were working on protein-protein interactions. We're
going to do a little bit to finish that up, with a topic that will be a good transition to the
study of the gene regulatory networks. And the precise things we're going to discuss
today, we're going to start off with Bayesian networks of protein-protein interaction
prediction. And then we're going to get into gene expression data, at several
different levels. We'll talk about some basic questions, of how to compare the two
expression vectors for a gene, distance metrics. We'll talk about how to cluster gene
expression data. The idea of identifying signatures of sets of genes, that might be

predictive of some biological property. For example, a susceptibility to a disease.

And then we'll talk about a number of different ways that people have developed to
try to identify gene regulatory networks. That often goes by the name of modules. |
don't particularly like that name. But that's what you'll find in the literature. And we're
going to focus on a few of these, that have recently been compared head to head,
using both synthetic and real data. And we'll see some of the results from that head

to head comparison.

So let's just launch into it. Remember last time we had started this unit looking at the
structural predictions for proteins. And we started talking about how to predict
protein-protein interactions. Last time we talked about both computational methods,
and also experimental data, that could give us information about protein-protein
interactions. Ostensibly measuring direct interactions, but we saw that there were
possibly very, very high error rates. So we needed ways of integrating lots of
different kinds of data in a probabilistic framework so we could predict for any pair
proteins what's the probability that they interact. Not just the fact that they were

detected in one assay or the other.

And we started to talk about Bayesian networks in this context. Both useful as we'll
see today, for predicting protein-protein interactions, and also for the gene
regulatory network problem. So the Bayesian networks are a tool for reasoning
probabilistically. That's the fundamental purpose. And we saw that they consisted of
a graph, the network. And then the probabilities that represent the probability for
each edge, the conditional probability tables. And that we can learn these from the
data, either in a completely objective way, where we learn both the structure and
the probability. Or where we impose the structure initially, and then we simply learn

the probability tables.

And we had nodes that represented the variables. They could be hidden nodes,
where we don't know what the true answer is, and observed nodes, where we do.
So in our case, we're trying to predict protein-protein interactions. There's some
hidden variable that represents weather protein A and B truly interact. We don't
know that answer. But we do know whether that interaction was detected in an
experiment one, two, three or 4. Those are the effects, the observed. And so we

want to reason backwards from the observations, to the hidden causes.

So last time we talked about the high throughput experiments, that directly we're
measuring out protein-protein interactions. We talked about yeast two hybrid and
affinity capture mass spec-- here listed as pull-downs. And those could be used to
predict protein-protein directions, by themselves. But we want to find out what other
kinds of data we can use to amplify these results, to give us independent

information about whether two proteins interact.

And one thing you could look at is whether the expression of the two genes that you
think might interact are similar. So if you look over many, many different conditions,
you might expect the two proteins that interact with each other, would be expressed
under similar conditions. Certainly if you saw two proteins that had exactly opposite

expression patterns, you would be very unlikely to believe that they interacted.

So the question is, how much is true at the other end of the spectrum? If things are

very highly correlated, do they have a high probability of interaction? So this graph

is a histogram for proteins that are known to interact, proteins that were shown in
these high throughput experiments to interact, and proteins that are known not to
interact, of how similar the expression is. On the far right are things that have
extremely different expression patterns, a high distance. And we'll talk specifically
about what distance is in just a minute. But these are very dissimilar expression

patterns. These are very similar ones.

So what do you see from this plot we looked at the last time? We saw that the
interacting proteins are shifted a bit to the left. So the interacting ones have a higher
probability of having similar expression patterns than the ones don't interact. But we
couldn't draw any cut off, and say everything with this level expression similarity is
guaranteed to interact. There's no way to divide these. So this will be useful in a

probabilistic setting. But by itself, it would not be highly predictive.

We also talked about evolutionary patterns, and we discussed whether the red or
the green patterns here, would be more predictive. And which one was it, anyone
remember? How many people thought the red was more predictive? How many the

green? Right, the greens win. And we talked about the coevolution in other ways.

So the paper that, | think, was one of the first to do this really nicely, try to predict
protein-protein interaction patterns using Bayesian networks, is this one from Mark
Gerstein's lab. And they start off as we talked about previously, we need some gold
standard interactions, where we know two proteins really do interact or don't. They
built their gold standard data set. The positive trending data, they took from a
database called MIPS, which is a hand-curated database that digs into the literature
quite deeply, to find out whether two proteins interact or not. And then the negative
data they took were proteins that were identified as being localized to different parts
of the cell. And this was done in yeast, to where there is pretty good data for a lot of

proteins, to subcellular localization.

So these are the data that went into their prediction. These were the experiments
we've already talked about, the affinity capture mass spec and the yeast two hybrid.

And then the other kinds of data they used were expression correlation, one just

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

talked about. They also looked at annotations, whether proteins had the same
annotation for function. And essentiality. So in yeast, it's pretty easy to go through
every gene in the genome, knock it out, and determine whether that kills the cell or
not. So they can label every gene in yeast, as to whether it's essential for survival or

not.

And you can see here, the number of interactions that were involved. And they
decided to break this down into two separate prediction problems. So one was an
experimental problem, using the four different large scale data sets in yeast from
protein-protein interactions, to predict expression. The other one wore these other
kinds of data, that were less direct. And they used slightly different kinds of
Bayesian networks. So for this one, they used a naive Bayes. And what's the
underlying assumption of the naive Bayes? The underlying assumption is that all the
data are independent. So we looked at this previously. We discussed how you
could, if you're trying to identify the likelihood ratio, and use it to rank things. You
primarily need to focus on this term. Because this term will be the same for every

pair of proteins that you're examining. Yes?

Could you state again whether in a naive Bayes, all data are dependent or

independent?

Independent.

OK.

OK. So let's actually look at some of their data. So in this table, they're looking at the
likelihood ratio that two proteins interact, based on whether the two proteins are
essential. One is essential, and one is a nonessential. Both are nonessential. So
that's what these two codes here mean. EE, both essential. NN, both nonessential,
and any one and the other. And so they've computed for all those protein pairs, how

many in their gold standard, are EE, how many are EN, how many are NN?

So here are the numbers for the EE. There are just over 1,000, out of the 2,000,

roughly 2,000 that are EE. So that comes up with a probability of being essential,

given that | know that you're positive. You're in the gold standard of roughly 50%,
right? And you can assume something similar for the negatives. So these are the
ones that definitely don't interact. So the probability of both being essential, given
that it's negative, is about 15%, 14%. And so then the likelihood ratio comes out to
just under four. So there's a fourfold increase in probability that something is

interacting, given that it's essential, then not.

And this is the table for all of the terms, for all of the different things that they were
considering, that were not direct experiments. So this is the sensuality. This is
expression correlation, with various values for the threshold, how similar the
expression had to be. And these are the terms from the databases for annotation.
And then for each of these, then we get a likelihood ratio of how predictive it is. So
it's kind of informative to look at some of these numbers. We already saw that
essentiality is pretty weak, predicted the fact that two genes are essential. It only
gives you a slightly increased chance that they're interacting than not. But if two
things, two genes have extremely high expression correlation, then they're more

than a hundredfold more likely to interact than not.

And the numbers for the annotations are significantly less than that. So this is a
naive Bayes. We're going to multiply all those probabilities together. Now for the
experimental data, they said, well, these are probably not all independent. The
probably that you pick something up in one two hybrid experiment, is probably
highly correlated with the probability that you pick it up in another two hybrid
experiment. And one would hope that there's some correlation between things are
identifying in two hybrid and affinity caption mass spec. Although we'll see whether

or not that's the case.

So they used what they refer to as a fully connected Bayes. And what do we mean
by that? Remember, this was the naive Bayes, where everything is independent. So

the probability of some observation is the product of all the individual probabilities.

But in a fully connected Bayes, we don't have that independence assumption. So

you need to actually explicitly compute what the probability is for an interaction,

based on all the possible outcomes in those experiments. So that's not that much

harder.

We simply have a table now, where these columns represent each of the
experimental data types-- the affinity capture mass spec and the two hybrids. Ones
indicate that it was detected, Zero is that it's not. And then we simply look again in
our gold standard, and see how often a protein that had been detected in whatever
the setting is here, in all of them except Ito, how often was it, how many of the gold
positives do we get? And how many of the gold negatives? And then we can

compute the probabilities.

Now it's important to look at some of the numbers in these tables and dig in.
Because you'll see the numbers here are really, really small. So they have to be
interpreted with caution. So some of the things that might not hold up with much
larger data sets. You might imagine the things that are experimentally detected in all
of the high-throughput assays would be the most confident. That doesn't turn out to

be the case.

So these are sorted by the law of likelihood ratio, and the best one is not 1, 1, 1. It's
up there. But it's not the top of the pack. And that's probably just the statistics of
small numbers. If the databases were larger, experiments were larger, it probably
would work out that way. So any question about how they formulated this problem,

as a Bayesian network, or how they implemented it? OK.

So the results then-- so once we have these likelihood ratios, we can try to choose a
threshold for deciding what we're going to consider to be a true interaction and not.
So here they've plotted for different likelihood ratio thresholds. On the x-axis, how
many of the true positives you get right, versus how many you get wrong. So the
true positive over the false positive. And you can arbitrarily decide, OK, well | want
to be more-- | want to get more right than wrong. Not a bad way to decide things.

So your passing grade here is 50%.

So if I draw a line, a horizontal line, and wanted to get more right than wrong, you'll

see that any of the individual signals that they were using, essentiality, database

sanitation, and so on-- all of those fall below that. So individually, they predict more
wrongs than rights. But if you combine the data using this Bayesian network, then
you can choose a likelihood threshold, where you do get more right than wrong.
And you can set your threshold wherever you want. Similarly for the direct
experimental data, you do better by combining-- these are light pink lines, than you

would with any of the individual data sets.

So this shows the utility of combining the data, and reasoning from the data
probabilistically. Any questions? So we'll return to Bayesian networks in a bit in the

context of discovering gene regulatory networks.

So we now want to move to gene expression data. And the primary reason to be so
interested in gene expression data is simply that there's a huge amount of it out
there. So just a short time ago we passed the million mark, with a number of
expression data sets that had been collected in the databases. There's much less of
any other kind of high throughput data. So if you look at proteomics or high-
throughput genetic screens, there are tiny numbers, compared to gene expression
data. So obviously techniques for analyzing gene expression data are going to play

a very important role for a long time to come.

Some of what I'm going to discuss today is covered in your textbooks. | encourage
you to look at text section 16.2. The fundamental thing that we're interested in
doing, is seeing how much biological knowledge we can infer from the gene
expression data. So we might imagine that genes that are coexpressed under
particular sets and conditions, have functional similarity, reflect common regulatory
mechanisms, and our goal then, is to discover those mechanisms. So fundamental
to this then, any time we have a pair of genes-- and we look at their gene

expression data-- we want to decide how similar they are.

So let's imagine that we had these data for four genes. And it's a time series
experiment. And we're looking at the different expression levels. And we want some
quantitative measure to decide which two genes are most similar. Well, it turns out

it's a lot more subtle than we might think. So at first glance, oh, it's pretty obvious

that these two are the most similar. But it really depends on what kind of similarity

you're asking about.

So we can describe any expression data set for any gene, is simply a multi-
dimensional vector. Where this is the set of expression values we detected for the
first gene, across all the different experimental conditions and so on, for the second.
And what would be the most intuitive way of describing the distance between two
multi-dimensional vectors? It would simply be Euclidean distance, right? So that's

perfectly reasonable.

So we can decide that the distance between two gene expression data sets, is
simply the square root of the sum of the squares of the distances. So we'll take the
sum over all the experimental conditions that we've looked at. Maybe it's a time
series. Maybe it's different perturbations. And look at the difference in expression of
gene A and gene B in that condition, K. And then evaluating this will tell us how

similar two genes are in their expression profiles.

Well, that's a specific example of a distance metric. It turns out that there's a formal
definition for a distance metric. Distances have the following properties. They're
always greater than zero. We never have negative distances. They are equal to
zero under exactly one condition-- the two data points are the same. And they're

symmetric. So the distance from A to B is the same as the distance from B to A.

Now, to be a true distance, then you also have to satisfy the triangle inequality, that
the distance from x to z is less than or equal to the sum of the distances through a
third point. But we will find out that we don't actually need that for similarity
measures. So we can have either a true distance metric for comparing gene

expression data sets, or similarity measures as well.

So let's go back to the simple example. So we decided that the red and the blue

genes were nearly identical, in terms of their distance metrics. But that's not always
exactly what we care about. So in biological settings, frequently the absolute level of
gene expression is on some arbitrary scale. Certainly with expression arrays, it was
completely arbitrary. It had to do with fluorescence properties, and how well probes

8

AUDIENCE:

PROFESSOR:

hybridize to each other.

But even with mRNA, how do we really know that 1,000 copies is fundamentally
different from 1,200 copies of an RNA in the cell? We don't. So we might be more
interested in distance metrics that capture not just the similarity of these two. But the
fact that these two are also quite similar, in terms of the trajectory of the plot to this
one. So can we come up with measures that capture this one as well? A very

common one for this is Pearson correlation.

So in Pearson correlation, we're gonna look at not just the expression of a gene
across conditions. But we're gonna look at the z-score of that gene. So we'll take all
of the data for all of the genes in a particular condition. And we'll compute the z-
score by looking at the difference between the expression of a particular gene, in
the average expression across the whole data set. And we're going to normalize it

by the standard deviation. Yes?

[INAUDIBLE] square there?

Yes, you're right. There should be a square there. Thank you.

So then to compute the Pearson correlation, we're going between two genes, A and
B, we're going to take the sum over all experiments, that the z-score for A and the
z-score for B, the product of that, summed over all the experiments. And these
values as we'll see in a second, are going to range from plus 1, which would be a
perfect correlation, to minus 1, which would be a perfect anti-correlation. And then
we're going to find the distance is 1 minus this value. So things that are perfectly
correlated then, would have an r of zero. And things that are anti-correlated would

have a large one.

So if we take a look at these two obviously by Euclidean distance, they'd be quite
different from each other. But the z-scores have converted the expression values
into z-scores over here, you can see that the z-scores obviously, this one is the
most negative of all of the ones. And this as the lowest one in all of these. This

one's the highest. And similarly for the red one, lowest to the highest. So the z-

scores track very well. And when | take the product of this, the signs of the z-score
for A and B are always the same. So | summed the product of the z-scores, | get a

large number. And then the normalization guarantees that it comes out to one.

And so the red and blue here will have a very high correlation coefficient. In this
case, it's going to be an r correlation coefficient of 1. Whereas compared to this
one, which is relatively flat, the correlation coefficient will be approximately zero. Any

questions on that?

So what about, say the blue and the red? Well, their z-scores are going to have
almost the opposite sign every single time. And so that's going to add up to a large
negative value. So for these, they'll be highly anti-correlated. So A, the blue and the
red, have a correlation coefficient of minus 1. OK. So we have these two different
ways of computing distance measures. We can compute the Euclidean distance,
which would make the red and blue the same, but treat the green one as being
completely different. Or we have the correlation, which would group all of these
together, as being similar. What you want to do is going to depend on your setting.

If you look in your textbook, you'll see a lot of other definitions of distance as well.

Now what if you're missing a particular data point? This used to be a lot more of a
problem with arrays than it is with [? RNAC. ?] With arrays, you'd often have dirt on
the array, that it actually would literally cover up spots. But you have a bunch of
choices. The most extreme would just be to ignore that row or column of your matrix
across old data sets. That's usually not what we want to do. You could put in some
arbitrary small value. But frequently we will do what's called imputing, where we'll try
to identify the genes that have the most similar expression, and replace the value

for the missing one with a value from the ones that we do know.

Distance metrics, pretty straightforward. Now we want to use these distance metrics
to actually cluster the data. And what's the idea here? That if we look across
enough data sets, we might find certain groups of genes that function similarly

across all those data sets, that might be revealing as to their biological function.

So this is an example of an unsupervised learning problem. We don't know what the

10

classes are, before we go in. We don't even know how many there are. We want to
learn from the data. This is a very large area of machine learning. We're just gonna
scrape the surface. Some of you may be familiar with the fact that these kinds of
machine learning algorithms are used widely outside of biology. They're used by
Netflix to tell you what would movie to choose next. Or Amazon, to try to sell you

new products. And all the advertisers who send pop-up ads on your computer.

But in our biological setting then, we have our gene expression data, collected
possibly over very large numbers of conditions. And we want to find groups of
genes that have some similarity. This is a figure from one of these very early
papers, that sort of establish how people present these datas. So you'll almost
always see the same kind of presentation. Typically you'll get a heat map, where
genes are rows. And the different experiments here time, but it could be different
perturbations, are the columns. And genes that go up in expression are red, and
genes ago down in expression are green. And apologies to anyone who's

colorblind. But that's just what the convention has become.

OK, so then why cluster? So if we cluster across the rows, then we'll get sets of
genes that potentially behave-- that hopefully if we do this properly, behave similarly
across different subsets of the experiments. And those might represent similar
functions. And if we cluster the columns, then we get different experiments that
show similar responses. So that might be in this case, different times that are
similar. Hopefully those are ones that are close to each other. But if we have lots of
different patients, as we'll see in a second, they might represent patients who have

a similar version of a disease.

And in fact, the clustering of genes does work. So even in this very early paper, they
were able to identify a bunch of subsets of genes that showed similar expression at
different time points, and turned out to be enriched in different categories. These
ones were enriched in cholesterol biosynthesis, whereas these were enriched in

wound healing, and so on.

So how do you actually do clustering? This kind of clustering is called hierarchical.

11

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

That's pretty straightforward. There are two versions of hierarchical clustering.
There's what's called agglomerative and divisive. In agglomerative, you start off with
each data point in its own cluster. And then you search for the most similar data
point to it, and you group those together. And you keep doing that iteratively,

building up larger and larger clusters.

So we've discussed how to compare our individual genes. But you should be able
to, right now, to find, if I gave you the vector of expression for a single gene, to find
the other genes in the data set that's most similar, by either say, Euclidean or
Pearson correlation, or what have you. But once you've grouped two genes
together, how do you decide whether a third gene is similar to those two? So now
we have to make some choices. And so there are number of different choices that

are commonly made.

So let's say these are our data. We've got these two clusters, Y and Z. And each
circle represents a data point in those clusters. So we've got four genes in each
cluster. Now we want to decide on a distance measure to compare cluster Y to
cluster Z. So what could we do? So what are some possibilities? What might you

do?

We could take the average of all points.

You could take the average of all points, right. What else could you do? Only a

limited number of possibilities.

Centroid?

Yeah, so centroid, you could take some sort of average, right. Any other

possibilities?

You can pick a representative from each set [INAUDIBLE].

So you could pick a representative, right? How would you decide in advance what
that would be though? So maybe you have a way, maybe not. And what other

possibilities are there? Yeah?

12

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

Measure all the distances [INAUDIBLE] to all the nodes in the other.

Right. So you could do all to all. What else could you do? You can take the minimum
of all those values. You can take the maximum of all those values. And we'll see that
all those are things that people do. So this clustering, there are already rather
uninformative terms for some of these kinds of decisions. So it's called single
linkage, is you decide that the distance between two clusters is based on the

minimum distance between any member of cluster Y and any member of cluster Z.

Complete linkage takes the maximum distance. And then the extremely
unfortunately named Unweighted Pair Group Method using Centroids-- UPGMC, |
won't try to say that very often-- takes the centroid, which was an early suggestion
from the class. And then the UPGMA, Unweighted Pair Group Method with
Arithmetic Mean, takes the average of all the distances, all suggestions that people

have made.

So when would you use one versus the other? Well, a priori, you don't necessarily
know. But it's good to know how they'll behave. So what do you imagine is going to
happen if you use single linkage, versus complete linkage. Remember, single
linkage is the minimum distance. And complete linkage is the maximum distance. So
what's going to happen in this case, if | use the minimum distance. Which two

groups will | combine?

The blue and the red.

The blue and the red, right? Whereas if | use the maximum distance, then I'll
combine the green and the red. So it's important to recognize, then, that the single
linkage has this property of chaining together clusters, based on points that are
near each other. Whereas the complete linkage is resistant to grouping things

together, if they have outliers. So they'll behave differently.

Now, if your data are compact, and you really do have tight clusters, it's not going to
matter too much would you use. But in most biological settings, we're dealing with

much noise, there's data. So you actually will get different results based on this. And

13

as far as | know, there's no really principal way to figure out if you have no prior

knowledge, which to use.

Now all of these hierarchical clustering come with what's called a dendogram. And
you'll see these at the top of all the clustering. And this represents the process by
which the data were clustered. So the things that are most similar are most tightly
connected in this dendogram. So these two data points, one and two, you have to
go up very little in the y-axis, to get from one to two. Whereas if you want to go from
one to 16, you have to traverse the entire dendogram. So the distance between two

samples is how far vertically you have to go to connect between them.

Now the good things are that the dendogram is, you can then understand the
clustering of the data. So | can cut this dendogram at any particular distance, and
get clearly divisions among my data sets. So if | cut here at this distance level, then |
have two groups. One small, one consisting of these data. And one large, one
consisting of these. Whereas if | cut down here, | have more groups of my data. So
it doesn't require me in advance to know how many groups | have. | can look at the

dendogram and infer it.

The one risk is that you always get a dendogram that's hierarchical, regardless of if
the data were hierarchical or not. So it's more a reflection of how you did your
clustering than any fundamental structure of the data. So the fact that you get a
hierarchical dendogram means really nothing about your data. It's simply a tool that
you can use to try to divide it up into different groups. Any questions on the

hierarchical clustering? Yes?

AUDIENCE: If each data point is its own cluster, then won't that be consistent across, like, single
linkage, complete linkage-- like, why would you cluster? Does that question make
sense? Like if you cut it down below, then haven't you minimized-- don't you

successively minimize the variance, | guess, up to your clusters, by--

PROFESSOR: So if | cut it at the lowest level, everybody is their own cluster. That's true. Right. I'm
interested in finding out whether there are genes that behave similarly across the
data sets. Or--

14

AUDIENCE:

PROFESSOR:

My question is, how would you go about determining how many clusters your want?

Oh, OK. So we'll come to that in a second. So hierarchical clustering, you don't
actually have any objective way of doing that. But we'll talk about other means right
now, where it's a little bit clearer. But actually fundamentally, there aren't a lot of
good ways of knowing a priori what the right number of clusters is. But we'll look at

some measures in a second that help.

So hierarchical clustering, as your question implies, doesn't really tell you how many
clusters there are. Another approach is to decide in advance how many clusters you
expect. And then see whether you can get the data of the group into that number or
not. And an example of that is something called k-means clustering. So the nice
thing about it, is it does give you the sharp divisions. But again if you chose k
incorrectly, we'll see in a second, you will get-- you'll never less still get K-clusters.

So K refers the number of clusters that you tell the algorithm you expect to get.

So you specify that in advance. And then you try to find a set of clusters that
minimizes the distance. So everybody's assigned to a particular cluster, and the
center of that cluster. Is that clear? So that's what these equations represent. So the
center of the cluster, the centroid, is just the average coordinates, over all the
components of that cluster. And we're trying to find this set of clusters, C, that
minimizes the sum of the square of the distances between each member of that

cluster and the centroid. Any questions on how we're doing this? OK. All right.

So what's the actual algorithm? That's remarkably simple. I'm choosing that initial
set of random positions. And then | have the simple loop, | repeat until

convergence. For every point, | assign it to the nearest centroid.

So if my starting centroids would be circles, | look at every data point, and | ask,
how close is it to any one of these? That's what the boundaries are, defined by
these lines. So everything above this line belongs to the centroid. Everything over
here belongs to this centroid. So | divide the data up by which centroid you are

closest to. And | assign you to that centroid. That's step one.

15

And step two, | compute new centroids. And that's what these triangles represent.
So after | did that partitioning, it turns out that most of the things that were assigned
to the triangular cluster live over here. So the centroid moves from being here to

here. And | iterate this process. That's the entire K-means clustering algorithm.

So here's an example where | generated data from three [? calcines. ?] | chose
initial data points, which are the circles. | follow that protocol. Here's the first step. It
computes new triangles. Second step, and then it converges. The distance stops

changing.

Now this question's already come up. So what happens if you choose the wrong K?
So | believe there are three clusters. And really that's not the case. So what's going

to happen?

So in this data set, there really were. How many, there really were five clusters.
Here, they're clustered correctly. What if | told the algorithm to do K-means
clustering with a K of three? It would still find a way to come up with three clusters.
So now it's grouped these two things, which are clearly generated from different [?
calcines ?] scenes together. It's grouped these two, which were generated from

different [? calcines ?] together, and so on.

All right. So K-means clustering will do what you tell it to do, regardless of whether
that's the right answer or not. And if you tell it there are more clusters than you
expect-- than really are there, then it'll start chopping up well-defined clusters into
sub-clusters. So here it split this elongated one into two sub-clusters. It split this one

arbitrarily into two. Just so it gets the final number that we asked for.

Then how do you know what to do? Well, as | said, you don't-- there's no guarantee
to know. But one thing you can do is make this kind of plot, which shows for different
values of K on the x-axis, the sum of the distances within the cluster. So the

distance to the centroid within each cluster on the y-axis.

And as | increase the number of K's, when I'm correctly [? purchasing ?] my data,

when there really are more subgroups than I've already defined, then I'll see big

16

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

drops. So | go from saying there are two to three in that case. | get a big drop in the
distance between members of the cluster. Because I'm no longer including a data

point over here. And in this cluster, with a data point in that cluster.

But once | go beyond the correct number, which was five, you see that the benefits
really start to trail off. So there's an inflection point here. There's an elbow--
sometimes it's called an elbow plot. After | go past the right number, | get less and
less benefit from each additional clustering. So this gives us an empirical way of

choosing approximately a correct value for K. Any questions on K-means? Yes?

Does K-means recapitulate the clusters that you would get if you cut off your

dendogram from hierarchical clustering at a certain level?

Not necessarily.

OK. But maybe. | don't know. It sort of seems to me as if you picked a level where
you have a certain number of clusters, that that's similar, at least by centroid, by

using the center?

Yeah, | think because of the way that you do it, you're not even guaranteed to have

a level, where you have exactly the right-- other questions? Yes?

Could you just very quickly go over how you initialized where the starting points are,

and the break ups?

All right, so the question is how do you initialize the starting points? In fact, you have
to make some arbitrary decisions about how the initialize the starting points. So
they're usually chose in a random. And you will get different results, depending on
how you do that. So that's another-- so when you do it, it's non-deterministic in that
sense. And you often want to initialize multiple times. And make sure you get similar
results. Very good question. And in fact, that was not a set up. But what happens if

you choose pathologically bad initial conditions?

So you have the potential to converge to the right answer. But you're not

guaranteed to converge to the right answer. So here's an example where | had-- |

17

guess there really are three clusters in the data. | chose [INAUDIBLE] three, but |
stuck all my initial coordinates down in the lower right-hand corner. And then when |

do the clustering, if things go well, | get the right answer. But we're not guaranteed.

But one thing we are guaranteed, is we always get convergence. So the algorithm
will converge. Because at each step, it's either reducing the objective function, or it's
leaving it the same. So we're guaranteed convergence. But it may be as we've seen
previously in other settings, we may end up with local minimum, rather than the
global optimum. And the way to fix that then would be to initialize again, with new

starting positions. Other questions?

What about a setting like this? Where we've got two well-defined clusters, and
somebody who lives straight in the middle. So what's the algorithm going to do?
Well, sometimes it'll put it in one side, of one cluster. And sometimes it'll end up in
the other side. So an alternative to K-means clustering, which has to make one or
the other arbitrary decision, is something that's called fuzzy K-means, which can put
something actually literally, membership into both clusters. And it's very similar in
structure to the K-means, with one important difference, which is a membership
variable, that tells you for every data point, how much it belongs to the cluster one,

cluster two, cluster three, and so on.

So in both algorithms, we start off by choosing initial points as a cluster means, and
looping through each of them. Now previously, we would make a hard assignment
of each data point x sub i to a single cluster. And here we're going to calculate the
probability that each data point belongs to a cluster. And that's where you get the
fuzziness, because you could have a non unit, or a nonzero probability, belonging to
any of the clusters. And now we're going, K-means, we recalculated the mean

value, by just looking at the average of everybody in that cluster.

Now in fuzzy K-means, we don't have everybody in the cluster. Because everybody
belongs partially to the cluster. So we're going to take a weighted average. So here
are the details of how you do that. In K-means, we are minimizing this function. We

were trying to decide the class structure, the class memberships, that would

18

minimize the distance of every member of that cluster, to the defined centroid of
that cluster. Here it looks almost the same. Except we now have this new variable,
mu, which is the membership. It's the membership of point j, in cluster i. So I'm
trying to minimize a very similar function. But now if mu is one-- if all my mus are
one, then what do | get? K-means, right? But as soon as the mus are allowed to
vary from one, they can be between zero and one, then points can contribute more
or less. So that point there was stuck in the middle of the two clusters, if it had a mu
of 0.5 for each, it would contribute half to each. And then both the centroids would

move a little bit towards the middle.

So what's the result of K-means-- I'm sorry, fuzzy K-means clustering? We still get K
clusters. But now every gene or every object that we're clustering has a partial
membership. So here's an example of that, where they did K-means clustering, with
these six different clusters. But now every profile, every gene, has a color
associated with it, that represents this mu value. Whether it goes from zero to one,
with these rainbow colors, to the things that are reddish, or pink-- those are the high
confidence things that are very strongly, only in that cluster. Whereas the things that
are more towards the yellow end of the spectrum are partially in this cluster and

partially in other clusters. Questions? Any questions?

So K-means, we've defined in terms of Euclidean distance. And that has clear
advantages, in terms of computing things very easily. But it has some
disadvantages as well. So one of the disadvantages is because we're using the
squared distance, then outliers have a very big effect. Because I'm squaring the
difference between vectors. That may not be the worst thing. But they also restrict
us to things for which we can compute a centroid. We have to have data that are--
four or more, you can actually compute the mean value of all members of the

cluster.

Sometimes you want to cluster things that we only have qualitative data. Where
instead of having a distance measure, we have similarity. This doesn't come up
quite as often in-- well, it certainly doesn't come up in gene expression data or [?

RNAC. ?] But you can imagine more qualitative data, where you ask people about

19

AUDIENCE:

similarity between different things or behavioral features, where you know the
similarity between two objects. But you have no way of calculating the average

object.

One setting that you might [INAUDIBLE] have looked at-- if you're trying to cluster
say, sequence motifs that you've computed with the EM algorithm. So what's the
average sequence motif? That doesn't necessarily represent any true object, right?
You might be better off-- you can calculate it. But it doesn't mean anything. You
might be better off calculating using rather than the average motif, the most central
of the motifs that you actually observed. So that would be called a medoid, or an
exemplar. It's a member of your cluster that's closest to the middle, even if it it's not

smack dab in the middle.

So instead of K-means, we can just think, well, K-medoids. So in K-means, we
actually computed a centroid. And in medoids, we'll choose the existing data point

that's most central. So what does that mean?

If these are my data, the true mean is somewhere over here. But this one is the
medoid. It's an exemplar that's close to the central point. But if there actually isn't
anything here, then there isn't. So we're going to use the thing that's closest. So if
these were all sequence motifs, rather than using some sequence motif that doesn't
exist as the center of your cluster, you would use a sequence motif that actually

does exist, and it's close to the center.

So it's a simple variation on the K-means. Instead choosing K points in arbitrary
space as our starting positions, we're going to choose K examples from the data as
our starting medoids. And then we're going to place each point in the cluster that
has the closest medoid, rather than median. And then when we do the update step,
instead of choosing the average position to represent the cluster, we'll choose the

medoid. The exemplar that's closest to the middle. Any questions on this? Yes?

So if you use the medoid, do you lose the guaranteed convergence? Because | can
picture a situation where you're sort of oscillating because now you have a discrete
stack.

20

PROFESSOR: That's a good question. That's probably right. Actually, | should think about that. I"m
not sure. Yeah, that's probably right. Other questions? OK.

There are a lot of other techniques for clustering. Your textbook talks about self
organizing maps, which were popular at one point quite a lot. And there's also a
nice technique called affinity propagation, which is a little bit outside the scope of

this course, but has proved quite useful for clustering.

OK. So why bother to do all this clustering? Our goal is to try to find some biological
information, not just to find groups of genes. So what can you do with these things?
Well, one thing that was identified early on, is if | could find sets of genes that
behave similarly, maybe those could be used in a predictive way, to predict

outcomes for patients, or some biological function.

So we're going to look at that first. So one of the early papers in this field did
clustering of microarrays for patients who had B-cell ymphoma. The patients had
different kinds of B-cell ymphomas. And so they took their data, they clustered it.

Again, each row represents a gene. And each column represents a patient here.

And with this projector, it's a little bit hard to see. But when you look at the notes
separately, you'll be able see that in the dendogram, there's a nice, sharp division
between two large groups of patients. And it turns out that when you look at the
pathologist's annotations for these patients, which was completely independent of
the gene expression data, all of patients in the left hand group-- almost all the
patients in the left hand group, had one kind of lymphoma. And all the patients in

the right hand group had a different kind of lymphoma.

And this got people very excited. Because it suggested that the pure molecular
features might be at least as good as pathological studies. So maybe you could

completely automate the identification of different tumor types.

Now the next thing that got people even more excited, was the idea that maybe you
could actually use these patterns not just to recapitulate what a pathologist would

find, but go beyond it, and actually make predictions from the patients. So in these
21

plots-- | don't know if we've seen these before yet in the class. But on the x-axis is

survival. In the y-axis are the fraction of patients in a particular group, who survived
that long. So as the patient's die, obviously the curve is dropping down. Each one of
these drops represents the death of a patient, or the loss of the patient to the study

for other reasons.

And so in the middle, let's start with this one. This is what the clinicians would have
decided. There are here, patients that they defined by clinical standards as being
likely to do well, versus patients whom they defined by clinical standards, as likely to
do poorly. And you could see there is a big difference in the plots for the low clinical
risk patients at the top, and the high clinical risk patients at the bottom. On the left
hand side, or what you get when you use purely gene expression data to cluster the
patients into groups that you turn out to be high risk or low risk. And you can see
that it's a little bit more statistically significant for the clinical risk. But it's pretty good

over here, too.

Now the really impressive thing is, what if you take the patients that the clinicians
define as low clinical risk? And then you look at their gene expression data. Could
you separate out the patients in that allegedly low clinical risk who are actually at
high risk? And maybe then they would be diverted to have more aggressive therapy
than patients who really and truly are low risk patients. And what they will show with
just barely statistical significance, is that even among the clinically defined low risk
patients, there is-- based on these gene signatures-- the ability to distinguish

patients who are going to do better, and patients who are going to do worse.

So this was over a decade ago. And it really set off a frenzy of people looking for
gene signatures for all sorts of things, that might be highly predictive. Now the fact
that something is correlated, doesn't of course prove any causality. So one of the
questions is, if | find a gene signature that is predictive of an outcome in one of the
studies, can | use it then to go backwards, and actually define a therapy? In the
ideal setting, | would have these gene signatures. I'd discover that they are clinically
associated with outcome. | could dig in and discover what makes the patients to do

worse, worse. And go and treat that. So is that the case or not? So let me show you
22

AUDIENCE:

PROFESSOR:

some data from a breast cancer data set.

Here's a breast cancer data set. Again the same kind of plot, where we've got the
survival statistic on the y-axis, the number of years on the x-axis. And based on a
gene signature, this group has defined a group that does better, and a group that
does worse, the p value is significant. And it has a ratio, the death rate versus
control is approximately two. OK. So does this lead us to any mechanistic insight
into breast cancer. Well, it turns out in this case, the gene signature was defined

based on postprandial laughter. So after dinner humor.

Here's a gene set that defined something that has absolutely nothing to do with
breast cancer, and it's predicting the outcome of breast cancer patients. Which
leads to somewhat more of a joke that the testing whether laughter really is the best
medicine. OK. So they went on-- they tried other genes sets. Here's the data set--
gene set that's not even defined in humans. It's the homologs of genes that are
associated with social defeat in mice. And once again, you get a statistically

significant p-value, and good hazard ratios.

So what's going on? Well, these are not from a study that's actually trying to predict
an outcome in breast cancer. It's a study that shows that most gene expression--
most randomly selected sets of genes in the genome will give an outcome that's

correlated-- a result that's correlated with a patient outcome in breast cancer. Yes?

I'm a little confused. In the previous graph, could you just explain what is the black

and what is the red? Is that individuals or groups?

So the black are people that have the genes set signature, who have high levels of
the genes that are defined in this gene set. And the red are ones have low, or the
other way around. But it's defining all patients into two groups, based on whether
they have a particular level of expression in this gene set, and then following those

patients over time. Do they do better or worse? And similarly for all these plots.

And he had another one which is a little less amusing, location of skin fibroblasts.

The real critical point is this. Here, they compared the probability based on

23

expectation an that all genes are independent of each other, the probability that that
gene signatures correlated with outcome, for genes there were chosen at random
or genes that were chosen from a database of gene signatures, that people have
identified as being associated with pathways. And you get a very, very large
fraction. So this is the p-value. So negative log of p-value, so negative values are
more significant. A huge fraction of all genes sets that you pull at random from the
genome, or that you pull from a compendium of known pathways, are going to be

associated with outcome, in this breast cancer data set.

So it's not just well annotated cancer pathways, that are associated. Its gene sets
associated as we've seen, with laughter or social defeat in mice, and so on-- all
sorts of crazy things, that have no mechanistic link to breast cancer. Let's take a
second for that to sink in. | pull genes at random from the genome. | define patients
based on whether they have high levels of expression of a random set of genes, or
low levels of expression of that random set of genes. And I'm extremely likely to be
able to predict the outcome in breast cancer. So that should be rather disturbing,

right?

So it turns out-- before we get to the answer then-- so this is not unique to breast
cancer. They went through a whole bunch of data sets in the literature. Each row is
a different previously published study, where someone had claimed to identify a
signature for a particular kind of disease or outcome. And they took their random
gene sets and asked how well the random genes sets did in predicting the outcome
in these patients? And so these yellow plots represent the probability distribution for
the random gene sets-- again on this projector, it's hard to see-- but there's a
highlight in the left hand side at where the 5%, the best 5% of the random gene sets
are. This blue line is the near measure of statistical significance. It turns out that a
few of these studies didn't even reach a normal level of statistical significance, let
alone comparing to random gene sets. But for most of these, you don't do better

than a good fraction of the randomly selected gene sets.

So how could this be? So it turns out there is an answer to why this happens. And

it's really quite fascinating. So here, we're using the hazard ratio, which is the death

24

rate for the patients who have the signature, over the control group. So high hazard
ratio means it's a very, very dissociative outcome. And they've plotted that against
the correlation of the genes in the gene signature, with the expression of a gene

called PCNA, Proliferating Cell Nuclear Antigen

And it turns out a very, very large fraction of the genome is coexpressed. So genes
are not expressed like random, completely independent random variables. There
are lots of genes that show very similar expression levels, across all the data sets.
Now PCNA is a gene that's been known by pathologists for a long time, as having
higher levels than most digressive tumors. So a very, very large fraction of the
genome is coexpressed with PCNA. Then high levels of randomly selected genes
are going to be a very good predictor of tumor outcome. Because high levels of
randomly expressed genes also means a very high probability of having a high level

PCNA, which is a tumor marker.

So we have to proceed with a lot of caution. We can find things that are highly
correlated with outcome, that could have good value in terms of prognostic
indicators. But there are going to be a lot of possibilities for sets of genes that have
that property, they're good predictors of outcome. And many of them will have
absolutely nothing to causally, with the process of the disease. So at the very least,
it means don't start a drug company over every set of genes, if you identify this as
associated with outcome. But the worst case scenario, it also means that those
predictions will break down under settings that we haven't yet examined. And so
that's the real fear, that you have a gene set signature that you think has a highly
predictive outcome. It's only because you looked at a particular set of patients. But

you look at a different set of patients, and that correlation will break down.

So this is an area of research that's still quite in flux, in terms of how much utility
there will be in identifying genes set signatures, in this completely objective way.
And what we'll see in the course of this lecture and the next one, is it's probably
going to be much more useful to incorporate other kinds of information that will

constrain us to be more mechanistic. Any questions?

25

All right. So now we're going to really get into the meat of the identification of gene
modules. And we're going to try to see how much we can learn about regulatory
structure from the gene expression data. So we're going to move up from just the
pure expression data-- say these genes at the bottom, to try to figure out what set
of transcription factors we're driving, and maybe what signaling pathways lived
upstream in those transcription factors, and turn them on. And the fundamental
difference then between clustering-- which is what we've been looking in until now,
and these modules, as people like to call them-- is that you can have a whole bunch
of genes, and we've just seen that, that are correlated with each other, without
being causally linked to each other. So we like to figure out which ones are actually

functionally related, and not just statistically related.

And the paper that's going to serve as our organizing principle in the rest of this
lecture, maybe bleeding into the next lecture, is this paper, recently published that's
called The DREAM5 Challenge. And this, like some of these other challenges that
we've seen before, is the case where the organizers have data sets, where are they
know the answer to what the regulatory structure is. They send out the data. People
try to make the best predictions they can. And then they unseal the data, to let
people know how well they did. And so you can get a relatively objective view of how

well different kinds of approaches work.

So this is the overall structure of this challenge. They had four different kinds of
data. Three are real data sets from different organisms, E. coli, yeast, and
Staphylococcus aureus. And then the fourth one, the one at the top here, is
completely synthetic data that they generated it. And you get a sense of the scale of
the data sets. So how many genes are involved, how many potential regulators. In
some cases, they've given you specific information on knockouts, antibiotics, toxins,
that are perturbing. And again here, the number of conditions that are being looked

at, the number of arrays.

So then they provide this data in a way that's very hard for the groups that are
analyzing to trace it back to particular genes. Because you don't want people to use

external data necessarily, to make their predictions. So every makes their

26

AUDIENCE:

PROFESSOR:

predictions. They also, as part of this challenge, they actually they made their own
metapredictions, based on the individual predictions by different groups. And we'll

take a look at that in a second. And then they score how well they did.

Now we'll get into the details of the scoring a little bit later. But what they found at
the highest levels, that different kinds of methods behaved similarly. So the main
groups that they found were these regression-based techniques. We'll talk about
those in a second. Bayesian networks, which we've already discussed in a different
context. A hodgepodge of different kinds of things. And then mutual information and
correlation. So we're going to look in each of these main categories of prediction

methods.

So we're going to start with the Bayesian networks, which we just finished talking
about in a completely different context. Here, instead of trying to predict whether
interaction is true, based on the experimental data, we're going to try to predict
whether a particular protein is involved in regulating a set of genes, based on the
expression data. So in this context-- let's say | have cancer data sets, and | wanted
to decide whether p53 is activated in those tumors, So this is a known pathway for
p53. So if | told you the pathway, how might you figure out if p53 is active from gene

expression data?

| tell you this pathway, give you this expression data-- what's kind of a simple thing
that you could do right away, to decide whether you think p53 is active or not? p53
is a transcriptional activator, but it should be turning on the genes of its targets

when its on. So what's an obvious thing to do?

Check the expression levels from the targets.

Thank you. Right, so we could check the expression levels. The targets compute
some simple statistics, right? OK. Well, that could work. But of course there could be
other transcriptional regulators that regulate a similar set of genes. So that's not a

guarantee that p53 is on. It might be some other transcriptional regulator.

We could look for the pathways that activate p53. We could ask whether those

27

genes are on. So we've got in this pathway, a bunch of kinases, an ATM, CHK1,
and so on, that activate p53. Now if we had proteomic data, we could actually look

whether those proteins are phosphorylated.

But we have much, much less proteomic data. And most of these settings only have
gene expression data. But you look at, is that gene expressed? Has the expression
of one of these activating proteins gone up? And you can try to make an inference
then. From whether there's more of these activating proteins, then maybe p53 is
active. And therefore it's turning on it's targets. That's one step removed. So just the
fact that there's a lot of ATM mRNA around doesn't mean that there's a lot of the
ATM protein, which certainly doesn't mean that the ATM is phosphorylated and

turning on its target. So again, we don't have a guarantee there.

We could look more specifically whether the genes are differentially expressed. So
the fact that they're on may not be as informative as if they were uniquely on in this
tumor, and not on in control cells from the same patient. So that can be informative.
But again changes in gene expression are not uniquely related to changes in

protein level. So we're going to have to behave with a bit of caution.

So the first step we're going to take in this direction, is try to build a Bayesian
network. That's going to give us a way to reason probabilistically over all of these
kinds of data, which by themselves are not great guarantees that we're getting the
right answer. Just like in the protein prediction interaction problem, where
individually coexpression wasn't all that great, essentiality wasn't all that great. But
taken together, they could be quite helpful. So we want to compute the probability
that the p53 pathway is active, given the data. And the only data we're going to
have in the setting is gene expression data. So we're going to assume that for the
targets of a transcription factor to be active, the transcription factor itself has to be
expressed at a higher level. That's a restriction of analyzing these kinds of data

that's very commonly used.

So we're going to try to compute the probability that p53 is activated, given the data.

So how would | compute the probability, that given that some transcription factors

28

on, that | see expression from target genes? How would | do this? | would just go
into the data, and just count in the same way that we did in our previous setting. We
could just look over all the experiments and tabulate whether one of the targets is
up in expression, how often is the transcription factor that's potentially activating it
up? And how often are all the possible combinations the case? And then we can
use Bayesian statistics to try to compute the probability that a transcription factor is

up, activated, given that I've seen the gene expression data. Is that clear? Good.

So we want to try to not include just the down stream factors. Because that leads
possibly, maybe there are multiple transcription factors that are equally likely to be
driving expressions instead of genes. We want to include the upstream regulators

as well.

And so here, we're going to take advantage of one of the properties of Bayesian
nets at where we looked at, explaining a way. And you'll remember this example,
where we decided that if see that the grass is wet, and | know that it's raining, then |
can consider less likely that the sprinklers were on. Even though there's no causal
relationship between them. So if | see that a set of targets of transcription factor A
are on, and | have evidence that the pathway upstream of A is on, that reduces my
inferred probability that the transcription factor B is responsible. So that's of the nice
things about Bayesian networks that gives us a way of reasoning automatically, over

all the data, and not just the down stream targets.

And the Bayesian networks can have multiple layers. So we can have one
transcription factor turning another one, turns on other one, turns on another one.
Again, we can have as many layers as necessary. But one thing we can't have are
cycles. So we can't have a transcription factor that's at the bottom of this, going
back and activating things that are at the top. And that's a fundamental limitation of
Bayesian networks. We've already talked about the fact that in Bayesian networks,
with these two problems that we to have to solve, we have to be able to define the
structure. If we don't know any a priori. Here, we don't know what a priori. So we're
going to have to learn the structure of the network. And then with the structure of

the network, we're going to have to learn all the probabilities. So the conditional

29

probability tables that relate to each variable to every other one.

And then just two more small points about it. So if | just give you expression data,
without any interventions-- just the observations, then | can't decide what is a cause
and what is an effect. So here this was done in the context of proteomics, but the

same is true for gene expression data.

If I have two variables, x and y, that are highly correlated, it could be that x activates
y. It could be that y activates x. But if | perturb the system, and | block the activity of
one of these two genes or proteins, then | can start to tell the difference. In this
case, if you inhibit x, you don't see any activation of y. That's the yellow, all down

here. But if you inhibit y, you see the full range of activity of x.

So that implies that x is the activator of y. And so in these settings, if you want to
learn a Bayesian network from data, you need more than just a compendium of
gene expression data. If you want to get the directions correct, you need

perturbations where someone has actually inhibited particular genes or proteins.

Now, in a lot of these Bayesian networks, we're not going to try to include every
possible gene and every possible protein. Either because we don't have
measurements of it, or because we need a compact network. So there will often be

cases where the true regulator in some causal chain, is missing from our data.

So imagine this is the true causal chain-- x activates y, which then activates z and w.
But either because we don't have the data on y, or because we left it out to make
our models more compact, it's not in the model. We can still pick up the
relationships between x and z, and x and w. But the data will be much noisier.
Because we're missing that information. In the conditional probability tables, relating

x to y, and then y because it's too targets.

So Bayesian networks, we've already seen quite a lot. We now have some idea of
how to transfer them from one domain to the domain of gene expression data. The

next approach we want to look at is a regression-based approach.

So the regression-based approaches are founded on a simple idea, which is that
30

the expression gene is going to be some function of the expression levels of the
regulator. We're going to actually try to come up with a formula that relates the
activity levels of the transcription factors, and the activity level of the target. In this
cartoon, I've got a gene that's on under one condition, that's off under some other
conditions. What transforms it from being off to on, is the introduction of more of

these transcription factors, that are binding to the promoter.

So in general, | have some predicted level of expression for the gene. It's called the
predicted level y. And it's some function, unspecified at this point, f of g, of all the
expression levels of the transcription factors that regulate that gene. So just again,
nomenclature is straight, x sub g is going to be the expression of gene x-- I'm sorry,
expression of gene g. This capital X, sub t of g is the set of transcription factors, that
| believe are regulating that gene. And then f is an arbitrary function. We're going to
have a noise term as well. Because this is the observed gene expression, not some

sort of platonic view of the true gene expression.

Now frequently, we'll have a specific function. So the simplest one you can imagine,
which is a linear function. So the expression of any particular gene is going to be a
linear function, a sum, of the expression of all of it's regulators, where each one has
associated with it a coefficient beta. And that beta coefficient tells us how much

particular a regulator influences that gene.

So say, p53 might have a very large value. Some other transcriptional regulator
might have a small value, representing their relative influence. Now, | don't know the
beta values in advance. So that's one of the things that | need to learn. So | want to
be able to find a setting that tells me what the beta values are for every possible
transcription factor. If the algorithm sets the beta value to zero, what does that tell
me? If a beta value is zero here, what does that tell me about that transcriptional
regulator? No influence, right. And the higher the value, then the greater the

influence.

OK. So how do we discover these? So the tip of the approach then is to come up

with some objective function that we're going to try to optimize. And an obvious

31

objective function is the difference between the observed expression value for each
gene, and the expected one, based on that linear function. And we're going to
choose a set of data parameters that minimize the difference between the observed
and the expected, minimize the sum of the squares. So the residual sum of the

squares error, between the predicted and the observed.

So this is a relatively standard regression problem, just in different setting. Now one
of the problems with a standard regression problem, is that we'll typically get a lot of
very small values of beta. So we won't get all zeros or all ones, meaning the
algorithm is 100% certain that these are the drivers and these are not. We'll get a lot
of small values for many, many transcription factors. And OK, that could represent
the reality. But the bad thing is that those data values are going to be unstable. So
small changes in the training data will give you big changes, in which transcription
factors have which values. So that not a desirable setting. There's a whole field built
up around trying to come up with better solutions. I've given you some references
here. One of them is to a paper that did well in the DREAM challenge. The other
one is to a very good textbook, Elements of Statistical Learning. And there are
various techniques that allow you to try to limit the number of betas that are non-
zero. And by doing that, you get more robust predictions. At a cost, right, because
there could be a lot of transcription factors that really do have small influences. But
we'll trade that off, by getting more accurate predictions from the ones that have the

big influences. Are there any questions on regression?

So the last of the methods that we're examining-- this is a mutual information. We've
already seen mutual information in the course. So information content is related to
the probability of observing some variable in an alphabet. So in most languages, the
probability of observing letters is quite variable. So Es are very common in the
English language. Other letters are less common. As anyone who plays Hangman
or watches Wheel of fortune knows. And we defined the entropy as the sum over all
possible outcomes. The probability of observing some variable, and the information
on to that variable, we can define the discrete case, or in the continuous case. And
the critical thing is to have mutual information between two variables. So that's the

difference between the entropy of those variables independently, and then the joint
32

entropy.

So things with a high mutual information, means that one variable gives the
significant knowledge of what the other variable is doing. It reduces my uncertainty.
That's the critical idea. OK. So we looked at correlation before. There could be
settings where you have very low correlation between two variables, but have high
mutual information. So consider these two genes, protein A and protein b, and the
blue dots are the relationship between them. You can see that there's a lot of
information content in these two variables. Knowing the value of A gives me a high
confidence in the value of B. But there's no linear relationship that describes these.
So if | use mutual information, | can capture situations like this, that | can't capture

with correlation. And these kinds of situations actually occur.

So for example in a feed-forward loop-- say we've got a regulator A, and it directly
activates B. It also directly activates C. But C inhibits B. So you've got the path on
the left-hand sides that are pressing the accelerator. And the path on the right hand
side pressing the stop pedal. That's called an incoherent feed-forward loop. And
you can get under different settings, different kinds of results, where this is one of

those examples.

You can get much more complicated behavior. [INAUDIBLE] are papers that have
really mapped out these behaviors across many parameters settings. You can get
switches in the behavior. But in a lot of these settings, you will have high mutual
information between two variables, even if you don't have any correlation, linear

correlation between them.

A well-publicized algorithm that uses mutual information to infer gene regulatory
networks is called ARACNe. They go through and they compute the mutual
information between all pairs of genes in their data set. And now one question you
have with mutual information is, what defines a significant level of mutual

information?

So an obvious way to do this, to try to figure out what's significant, is to do

randomizations. And so that's what they did. They shuffled the expression data, to
33

compute mutual information among pairs of genes, where there isn't actually a
need-- there shouldn't be any relationships. Because the data had been shuffled.
And then you can decide whether the observed mutual information is significantly

greater than when you get from the randomized data.

Now, the other thing that happens with mutual information is that indirect effects still
apply to degrees of mutual information. So let's consider the set of genes that are
shown on this. So you've got G2, which is actually a regulator of G1 and G3. So G2

is going to have high mutual information with G1, and with G3.

Now, what's it going to be about G1 and G37? They're going to behave very similarly,
as well. So it'll be a high degree of mutual information between G1 and G3. So if |
just rely on mutual information, | can't tell what's a regulator and what's a fellow at
the same level of regulation. They're both being affected by something above them.

| can't tell the difference between those two.

So they use what's called the data processing inequality, where they say, well, these
regulatory interactions should have higher mutual information, than this, which is
just between two common targets in the same parent. And so they drop from their

network, those things which are the lower of the three in a triangle.

So that was the original ARACNe algorithm, and then they modified it a little bit, to
try to be more specific in terms of the regulators that were being picked up. And so
they called this approach MINDy. And the core idea here, is that in addition to the
transcription factors, you might have another protein that turns a transcription factor
on or off. So if | look over different concentrations of the transcription factor,
different levels of expression between transcription factors, | might find that there
are some cases where this other protein turns it on, and other cases where it turns

it off.

So here, consider these two data sets. Looking at different concentrations of
particular transcription factor and different expression levels, and in one case-- the
blue ones, the modulator isn't present at all, or present at it's lowest possible level.

And in the red case, it's present as a high level. And you can see that when the
34

modulator is present only in low levels, there's no relationship between a target and
it's transcription factor. Or when the modulator is present at a high level, then
there's this linear response of the target to it's transcription factor. So this modulator
seems to be a necessary component. So they went through and defined a whole
bunch of settings like this. And then systematically search the data for these

modulators.

So they started off with the expression data set, genes in rows, experiments in
columns. They do a set of filtering to remove things that are going to be problematic
for the analysis. They look, for example, for settings where you have-- they had to
start with a list of modulators and transcription factors, and they moved the ones
where there isn't enough variation, and so on. And then they examine, for every
modulator and transcription factor pair, cases where the modulator is present at its
highest level, and where it's present at it's lowest level. So when the modulator is
present at a high level-- let's say, when the modulator is present at a high level,
there's a high mutual information between the transcription factor and the target.
When the modulator is absent, there's no mutual information. That's a setting we
looked at before. That would suggest that the modulator is an activator. It's a

positive modulator.

You can have the opposite situation, where when the modulator is present at low
levels, there's mutual information between a transcription factor and it's target.
When the modulator is present at a high level, you don't see anything. That would
suggest that the modulator is a negative regulator. And then there are scenarios
where there's either uniformly high information content between transcription factor

target, or uniformly low. So the modulator doesn't seem to be doing anything.

So we break it down into these categories. And you can look at all the different
categories, in their supplemental tables. One thing that's kind of interesting is they
assume that regardless of how high the transcription factor goes, you'll always see
an increase in the expression of the target. So there is no saturation, which is an
unnatural assumption in these data sets. OK. So I think I'll close with this example,

from their experiment. And then in the next lecture, we'll look at how these different
35

methods fare against each other in the DREAM challenge.

So they specifically wanted to find regulators of MYC. So here's data for a particular
regulator, SDK 38. Here's the set of expression of tumors where SDK 38 expression
is lowest. And a set of tumors where SDK 38 expression is highest. And they're
sorted by the expression level of MYC. So on the left hand side, you'll see there's no
particular relationship between the expression level of MYC and the targets. In the
right hand side, there is a relationship between the expression level of MYC and
targets. So having, apparently-- at least at this level of mutual information, having
higher levels of SDK 38, cause a relationship to occur. That would be example of an

activator.

OK. So this technique has a lot of advantages, and allows you to search rapidly over
very large data sets, to find potential target transcription factor relationships, and
also potential modulators. It has some limitations. Where the key limitations is that

the signal has to be present in the expression data set.

So in the case of a protein like p53, where we know it's activated by all sort of other
processes, phosphorylation or NF-kappaB, where it's regulated by phosphorylation,
you might not get any signal. So there has to be a case where the transcription
factor itself, is changing expression. It also won't work if the modulator is always
highly correlated with its target, for some other biological reason. So the modulator
has to be on, for other reasons, when the target is, then you'll never be able to

divide the data in this way.

One of the other things | think that is problematic with these networks is that you get
such large networks, and they're very hard to interpret. So in this case, this is the
nearest neighbors of just one node in ARACNe. This is the mutual information
network of microRNA modulators that has a quarter of a million interactions. And in
these data sets, often you end up selecting a very, very large fraction of all the
potential modulators. So of all the candidate transcription factors in modulators, it
comes up with an answer that's roughly 10% to 20% of them are regulating any

particular gene, which seems awfully high.

36

OK. So any questions on the methods we've seen so far? OK. So when we come
back on Thursday, we'll take a look at head to head of how these different methods

perform on both the synthetic and the real data sets.

37

